Other Sites:
Robert J. Robbins is a biologist, an educator, a science administrator, a publisher, an information technologist, and an IT leader and manager who specializes in advancing biomedical knowledge and supporting education through the application of information technology. More About: RJR | OUR TEAM | OUR SERVICES | THIS WEBSITE
RJR: Recommended Bibliography 24 Apr 2025 at 01:30 Created:
Biodiversity and Metagenomics
If evolution is the only light in which biology makes sense, and if variation is the raw material upon which selection works, then variety is not merely the spice of life, it is the essence of life — the sine qua non without which life could not exist. To understand biology, one must understand its diversity. Historically, studies of biodiversity were directed primarily at the realm of multicellular eukaryotes, since few tools existed to allow the study of non-eukaryotes. Because metagenomics allows the study of intact microbial communities, without requiring individual cultures, it provides a tool for understanding this huge, hitherto invisible pool of biodiversity, whether it occurs in free-living communities or in commensal microbiomes associated with larger organisms.
Created with PubMed® Query: biodiversity metagenomics NOT pmcbook NOT ispreviousversion
Citations The Papers (from PubMed®)
RevDate: 2025-04-23
CmpDate: 2025-04-23
Metagenomics and Non-Targeted Metabolomics Reveal the Role of Gut Microbiota and Its Metabolites in Brain Metastasis of Non-Small Cell Lung Cancer.
Thoracic cancer, 16(8):e70068.
BACKGROUND: Brain metastasis is a common and severe complication in non-small cell lung cancer (NSCLC) patients, significantly affecting prognosis. However, the role of gut microbiota and its metabolites in NSCLC brain metastasis remains poorly understood. This study aims to explore the relationship between gut microbiota, metabolites, and the development of brain metastasis in NSCLC.
METHODS: We conducted an integrative analysis combining metagenomics and non-targeted metabolomics on baseline fecal samples from NSCLC patients with brain metastasis (n = 18) and those without distant metastasis (n = 12). Gut microbiota composition and metabolite profiles were detected and analyzed, and statistical methods, including machine learning models, were applied to identify differences and potential biomarkers.
RESULTS: Significant differences in gut microbiota composition were found between the two groups, with higher microbial diversity observed in patients with brain metastasis. Specific genera, such as Paenibacillus, Fournierella, and Adlercreutzia, were enriched in the brain metastasis group. Metabolomic analysis revealed altered levels of short-chain fatty acids and other metabolites associated with immune modulation and vascular permeability, including angiotensin (1-7). These changes were linked to the metastatic process and may influence brain metastasis development. Furthermore, machine learning models identified key biomarkers, such as Raoultibacter, Mobilibacterium, and N-acetyl-L-glutamic acid, which could serve as valuable indicators for brain metastasis.
CONCLUSIONS: Our findings suggest that gut microbiota dysbiosis and its metabolic products may contribute to the development of brain metastasis in NSCLC. The identification of microbiota-derived biomarkers holds potential for early detection and therapeutic intervention in NSCLC brain metastasis.
Additional Links: PMID-40263747
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40263747,
year = {2025},
author = {Liu, CG and Lin, MX and Xin, Y and Sun, M and Cui, J and Liu, D and Zang, D and Chen, J},
title = {Metagenomics and Non-Targeted Metabolomics Reveal the Role of Gut Microbiota and Its Metabolites in Brain Metastasis of Non-Small Cell Lung Cancer.},
journal = {Thoracic cancer},
volume = {16},
number = {8},
pages = {e70068},
doi = {10.1111/1759-7714.70068},
pmid = {40263747},
issn = {1759-7714},
support = {2022RQ091//Science and Technology Talent Innovation Support Plan of Dalian/ ; 82203056//National Natural Science Foundation of China/ ; 2022LCYJYB01//The "1+X" program for Clinical Competency enhancement-Clinical Research Incubation Project of the Second Hospital of Dalian Medical University/ ; 2023-BS-167//Natural Science Foundation of Liaoning Province/ ; },
mesh = {Humans ; *Carcinoma, Non-Small-Cell Lung/pathology/metabolism/microbiology ; *Gastrointestinal Microbiome ; *Brain Neoplasms/secondary/metabolism ; *Lung Neoplasms/pathology/metabolism/microbiology ; *Metabolomics/methods ; Female ; Male ; *Metagenomics/methods ; Middle Aged ; Aged ; Prognosis ; },
abstract = {BACKGROUND: Brain metastasis is a common and severe complication in non-small cell lung cancer (NSCLC) patients, significantly affecting prognosis. However, the role of gut microbiota and its metabolites in NSCLC brain metastasis remains poorly understood. This study aims to explore the relationship between gut microbiota, metabolites, and the development of brain metastasis in NSCLC.
METHODS: We conducted an integrative analysis combining metagenomics and non-targeted metabolomics on baseline fecal samples from NSCLC patients with brain metastasis (n = 18) and those without distant metastasis (n = 12). Gut microbiota composition and metabolite profiles were detected and analyzed, and statistical methods, including machine learning models, were applied to identify differences and potential biomarkers.
RESULTS: Significant differences in gut microbiota composition were found between the two groups, with higher microbial diversity observed in patients with brain metastasis. Specific genera, such as Paenibacillus, Fournierella, and Adlercreutzia, were enriched in the brain metastasis group. Metabolomic analysis revealed altered levels of short-chain fatty acids and other metabolites associated with immune modulation and vascular permeability, including angiotensin (1-7). These changes were linked to the metastatic process and may influence brain metastasis development. Furthermore, machine learning models identified key biomarkers, such as Raoultibacter, Mobilibacterium, and N-acetyl-L-glutamic acid, which could serve as valuable indicators for brain metastasis.
CONCLUSIONS: Our findings suggest that gut microbiota dysbiosis and its metabolic products may contribute to the development of brain metastasis in NSCLC. The identification of microbiota-derived biomarkers holds potential for early detection and therapeutic intervention in NSCLC brain metastasis.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Carcinoma, Non-Small-Cell Lung/pathology/metabolism/microbiology
*Gastrointestinal Microbiome
*Brain Neoplasms/secondary/metabolism
*Lung Neoplasms/pathology/metabolism/microbiology
*Metabolomics/methods
Female
Male
*Metagenomics/methods
Middle Aged
Aged
Prognosis
RevDate: 2025-04-22
CmpDate: 2025-04-23
Multi-omics profiling of dairy cattle oxidative stress identifies hindgut-derived Phascolarctobacterium succinatutens exhibiting antioxidant activity.
NPJ biofilms and microbiomes, 11(1):61.
An imbalance between oxidative and antioxidant processes in the host can lead to excessive oxidation, a condition known as oxidative stress (OS). Although changes in the hindgut microbiota have been frequently linked to OS, the specific microbial and metabolic underpinnings of this association remain unclear. In this study, we enrolled 81 postpartum Holstein cows and stratified them into high oxidative stress (HOS, n = 9) and low oxidative stress (LOS, n = 9) groups based on the oxidative stress index (OSi). Using a multi-omics approach, we performed 16S rRNA gene sequencing to evaluate microbial diversity, conducted metagenomic analysis to identify functional bacteria, and utilized untargeted metabolomics to profile serum metabolites. Our analyses revealed elevated levels of kynurenine, formyl-5-hydroxykynurenamine, and 5-hydroxyindole-3-acetic acid in LOS dairy cows. Additionally, the LOS cows had a higher abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Bacteroidetes bacterium, Paludibacter propionicigenes, and Phascolarctobacterium succinatutens (P. succinatutens), which were negatively correlated with OSi. To explore the potential role of these bacteria in mitigating OS, we administered P. succinatutens (10[8] cfu/day for 14 days) to C57BL/6 J mice (n = 10). Oral administration of P. succinatutens significantly increased serum total antioxidant capacity, decreased total oxidants, and reduced OSi in mice. Moreover, this treatment promoted activation of the Nrf2-Keap1 antioxidant pathway, significantly enhancing the enzymatic activities of GSH-Px and SOD, as well as the concentrations of acetate and propionate in the colon. In conclusion, our findings suggest that systemic tryptophan metabolism and disordered SCFAs production are concurrent factors influenced by hindgut microbiota and associated with OS development. Modulating the hindgut microbiota, particularly by introducing specific SCFAs-producing bacteria, could be a promising strategy for combating OS.
Additional Links: PMID-40263287
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40263287,
year = {2025},
author = {Gao, D and Zhuang, Y and Liu, S and Ma, B and Xu, Y and Zhang, H and Nuermaimaiti, Y and Chen, T and Hou, G and Guo, W and You, J and Huang, Z and Xiao, J and Wang, W and Li, M and Li, S and Cao, Z},
title = {Multi-omics profiling of dairy cattle oxidative stress identifies hindgut-derived Phascolarctobacterium succinatutens exhibiting antioxidant activity.},
journal = {NPJ biofilms and microbiomes},
volume = {11},
number = {1},
pages = {61},
pmid = {40263287},
issn = {2055-5008},
support = {2024BBF01006//Key Research and Development Program of Ningxia/ ; 2023YFD1300904//National Key Research and Development Program of China/ ; 2024-KFKT-026//National Center of Technology Innovation for Dairy/ ; PC2023B02002//Pinduoduo-China Agricultural University Research Fund/ ; },
mesh = {Animals ; Cattle ; *Oxidative Stress ; *Antioxidants/metabolism ; *Gastrointestinal Microbiome ; RNA, Ribosomal, 16S/genetics ; Female ; Mice ; Fatty Acids, Volatile/metabolism ; Metabolomics ; Metagenomics ; *Clostridiales/genetics/metabolism/isolation & purification ; Multiomics ; },
abstract = {An imbalance between oxidative and antioxidant processes in the host can lead to excessive oxidation, a condition known as oxidative stress (OS). Although changes in the hindgut microbiota have been frequently linked to OS, the specific microbial and metabolic underpinnings of this association remain unclear. In this study, we enrolled 81 postpartum Holstein cows and stratified them into high oxidative stress (HOS, n = 9) and low oxidative stress (LOS, n = 9) groups based on the oxidative stress index (OSi). Using a multi-omics approach, we performed 16S rRNA gene sequencing to evaluate microbial diversity, conducted metagenomic analysis to identify functional bacteria, and utilized untargeted metabolomics to profile serum metabolites. Our analyses revealed elevated levels of kynurenine, formyl-5-hydroxykynurenamine, and 5-hydroxyindole-3-acetic acid in LOS dairy cows. Additionally, the LOS cows had a higher abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Bacteroidetes bacterium, Paludibacter propionicigenes, and Phascolarctobacterium succinatutens (P. succinatutens), which were negatively correlated with OSi. To explore the potential role of these bacteria in mitigating OS, we administered P. succinatutens (10[8] cfu/day for 14 days) to C57BL/6 J mice (n = 10). Oral administration of P. succinatutens significantly increased serum total antioxidant capacity, decreased total oxidants, and reduced OSi in mice. Moreover, this treatment promoted activation of the Nrf2-Keap1 antioxidant pathway, significantly enhancing the enzymatic activities of GSH-Px and SOD, as well as the concentrations of acetate and propionate in the colon. In conclusion, our findings suggest that systemic tryptophan metabolism and disordered SCFAs production are concurrent factors influenced by hindgut microbiota and associated with OS development. Modulating the hindgut microbiota, particularly by introducing specific SCFAs-producing bacteria, could be a promising strategy for combating OS.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
*Oxidative Stress
*Antioxidants/metabolism
*Gastrointestinal Microbiome
RNA, Ribosomal, 16S/genetics
Female
Mice
Fatty Acids, Volatile/metabolism
Metabolomics
Metagenomics
*Clostridiales/genetics/metabolism/isolation & purification
Multiomics
RevDate: 2025-04-22
CmpDate: 2025-04-23
Current Approaches and Implications in Discovery of Novel Bioactive Products from Microbial Sources.
Current microbiology, 82(6):258.
Bioactive Natural Products (BNPs) are in high demand due to their disease-preventive capabilities and resistance to pathogens. However, our understanding of BNP-producing microbes is limited, because many microbial populations remain uncultivated. Various approaches have been employed to explore the potential of these hidden microbes for new bioactive therapeutic compounds. Nevertheless, the possibility of discovering BNPs from microbial communities is largely cryptic due to their unculturable nature and the absence of triggers to activate the dormant Biosynthetic Gene Clusters (BGCs). Metagenome sequencing, followed by mining and characterization, is an effective approach for discovering new therapeutic BNPs. The inactive state of BGCs can be activated through the combinatorial interaction of different microbial communities within a common niche, overcoming programmable co-evolutionary stress and producing new BNPs. The present review discusses and explores the potential of hidden, uncultivated microbes for discovering novel Bioactive Natural Products (BNPs). Moreover, it provides insights into optimizing microbial production systems and fostering sustainable drug discovery and development practices by integrating multidisciplinary strategies. This review also emphasizes the critical role of microbial sources in the ongoing search for new bioactive products that can meet the demands of modern healthcare and environmental sustainability.
Additional Links: PMID-40263159
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40263159,
year = {2025},
author = {Pandey, A and Israr, J and Pandey, J and Misra, S},
title = {Current Approaches and Implications in Discovery of Novel Bioactive Products from Microbial Sources.},
journal = {Current microbiology},
volume = {82},
number = {6},
pages = {258},
pmid = {40263159},
issn = {1432-0991},
mesh = {*Biological Products/metabolism/pharmacology/isolation & purification/chemistry ; *Drug Discovery/methods ; *Bacteria/metabolism/genetics ; Multigene Family ; Biosynthetic Pathways/genetics ; Microbiota ; },
abstract = {Bioactive Natural Products (BNPs) are in high demand due to their disease-preventive capabilities and resistance to pathogens. However, our understanding of BNP-producing microbes is limited, because many microbial populations remain uncultivated. Various approaches have been employed to explore the potential of these hidden microbes for new bioactive therapeutic compounds. Nevertheless, the possibility of discovering BNPs from microbial communities is largely cryptic due to their unculturable nature and the absence of triggers to activate the dormant Biosynthetic Gene Clusters (BGCs). Metagenome sequencing, followed by mining and characterization, is an effective approach for discovering new therapeutic BNPs. The inactive state of BGCs can be activated through the combinatorial interaction of different microbial communities within a common niche, overcoming programmable co-evolutionary stress and producing new BNPs. The present review discusses and explores the potential of hidden, uncultivated microbes for discovering novel Bioactive Natural Products (BNPs). Moreover, it provides insights into optimizing microbial production systems and fostering sustainable drug discovery and development practices by integrating multidisciplinary strategies. This review also emphasizes the critical role of microbial sources in the ongoing search for new bioactive products that can meet the demands of modern healthcare and environmental sustainability.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Biological Products/metabolism/pharmacology/isolation & purification/chemistry
*Drug Discovery/methods
*Bacteria/metabolism/genetics
Multigene Family
Biosynthetic Pathways/genetics
Microbiota
RevDate: 2025-04-23
CmpDate: 2025-04-23
3-Fucosyllactose Prevents Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota-Derived Pantothenate in Mice.
Journal of agricultural and food chemistry, 73(16):9637-9649.
Nonalcoholic fatty liver disease (NAFLD) is a growing global health threat. Human milk oligosaccharides (HMOs) exhibit prebiotic properties that may alleviate NAFLD progression. Herein, our study demonstrates that 3-fucosyllactose (3-FL), a distinctive and crucial HMO, significantly attenuates body weight gain, enhances hepatic lipid metabolism, and reduces inflammation in a high-fat diet (HFD)-induced NAFLD mouse model. These findings suggest its potential as a dietary supplement for preventing and alleviating NAFLD progression. Subsequently, fecal metagenomic and nontargeted metabolomics analyses revealed that 3-FL treatment significantly alleviated HFD-induced gut microbiota dysbiosis, with a specific enhancement of the pantothenate (vitamin B5) metabolic pathways. Our targeted metabolite analysis further revealed a significant increase in both hepatic and fecal pantothenate concentrations, which contributed to the enhancement of the coenzyme A (CoA)-mediated lipid metabolism pathway. Furthermore, the subsequent population cohort analyses revealed a significant correlation between serum pantothenate levels and the progression of NAFLD, thereby reinforcing its candidacy as a noninvasive diagnostic biomarker. These findings show that 3-FL acts as an effective prebiotic to alleviate NAFLD symptoms, in part by enhancing the gut microbiota-mediated pantothenate/CoA metabolic pathway.
Additional Links: PMID-40230307
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40230307,
year = {2025},
author = {Liu, B and He, N and Li, H and Yang, Z and Lin, Y and Wu, X and Zhang, H and Zhang, Z and Zhang, Z and Tian, Y and Wu, Z and Zou, Y and Peng, J and Li, S},
title = {3-Fucosyllactose Prevents Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota-Derived Pantothenate in Mice.},
journal = {Journal of agricultural and food chemistry},
volume = {73},
number = {16},
pages = {9637-9649},
doi = {10.1021/acs.jafc.5c00079},
pmid = {40230307},
issn = {1520-5118},
mesh = {*Gastrointestinal Microbiome/drug effects ; Animals ; Mice ; *Pantothenic Acid/metabolism ; *Non-alcoholic Fatty Liver Disease/metabolism/microbiology/prevention & control/drug therapy ; Male ; Mice, Inbred C57BL ; Humans ; Diet, High-Fat/adverse effects ; Liver/metabolism ; *Trisaccharides/administration & dosage ; Prebiotics/administration & dosage/analysis ; Lipid Metabolism/drug effects ; Bacteria/isolation & purification/classification/genetics/metabolism ; },
abstract = {Nonalcoholic fatty liver disease (NAFLD) is a growing global health threat. Human milk oligosaccharides (HMOs) exhibit prebiotic properties that may alleviate NAFLD progression. Herein, our study demonstrates that 3-fucosyllactose (3-FL), a distinctive and crucial HMO, significantly attenuates body weight gain, enhances hepatic lipid metabolism, and reduces inflammation in a high-fat diet (HFD)-induced NAFLD mouse model. These findings suggest its potential as a dietary supplement for preventing and alleviating NAFLD progression. Subsequently, fecal metagenomic and nontargeted metabolomics analyses revealed that 3-FL treatment significantly alleviated HFD-induced gut microbiota dysbiosis, with a specific enhancement of the pantothenate (vitamin B5) metabolic pathways. Our targeted metabolite analysis further revealed a significant increase in both hepatic and fecal pantothenate concentrations, which contributed to the enhancement of the coenzyme A (CoA)-mediated lipid metabolism pathway. Furthermore, the subsequent population cohort analyses revealed a significant correlation between serum pantothenate levels and the progression of NAFLD, thereby reinforcing its candidacy as a noninvasive diagnostic biomarker. These findings show that 3-FL acts as an effective prebiotic to alleviate NAFLD symptoms, in part by enhancing the gut microbiota-mediated pantothenate/CoA metabolic pathway.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Gastrointestinal Microbiome/drug effects
Animals
Mice
*Pantothenic Acid/metabolism
*Non-alcoholic Fatty Liver Disease/metabolism/microbiology/prevention & control/drug therapy
Male
Mice, Inbred C57BL
Humans
Diet, High-Fat/adverse effects
Liver/metabolism
*Trisaccharides/administration & dosage
Prebiotics/administration & dosage/analysis
Lipid Metabolism/drug effects
Bacteria/isolation & purification/classification/genetics/metabolism
RevDate: 2025-04-23
CmpDate: 2025-04-23
Expanding the potential soil carbon sink: unraveling carbon sequestration accessory genes in vermicompost phages.
Applied and environmental microbiology, 91(4):e0029625.
The compost microbiome is important in regulating soil carbon sequestration. However, there is limited information concerning phage communities and phage-encoded auxiliary metabolic genes (AMGs) in compost-applied soils. We combined metagenomics and meta-viromes to explore the potential role of bacterial and phage communities in carbon sequestration in the compost microbiome. The experiment comprised swine manure compost (SW) and vermicompost (VE) applied to the soil along with a control treatment (CK). The bacterial community richness decreased after swine manure application and increased after vermicomposting compared to the control treatment. The phage community in the vermicompost-applied soil was dominated (63.1%) by temperate phages. In comparison, the communities of the swine manure compost-applied soil (92.7%) and control treatments (75.4%) were dominated by virulent phages. Phage-encoded carbon sequestration AMGs were detected in all three treatments, with significant enrichment in the vermicompost-applied soil. The average carbon sequestration potential (the coverage ratio of phage AMGs:total genes) of phage AMGs (aceF, GT11, and GT6) in the vermicompost-applied soil (65.18%) was greater than in the swine manure-applied (0) and control soils (50.21%). The results highlight the role of phage-encoded AMGs in improving soil carbon sequestration in vermicompost-applied soil. The findings provide new avenues for increasing soil carbon sequestration.IMPORTANCEThe phage-bacteria interactions have a significant impact on the global carbon cycle. Soil microbial carbon sequestration is a process in combination withcarbon sequestration genes and growth activity. This is the first study aimed at understanding the carbon sequestration potential of phage communities in vermicompost. The results of this study provide variations in carbon sequestration genes in vermicompost microbial communities, and some novel phage auxiliary metabolic genes were revealed to assist bacterial communities to increase soil carbon sequestration potential. Our results highlight the importance of phages in soil carbon sequestration from the perspective of phage-bacterial community interactions.
Additional Links: PMID-40084893
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40084893,
year = {2025},
author = {Yuan, S and Wu, Y and Balcazar, JL and Wang, D and Zhu, D and Ye, M and Sun, M and Hu, F},
title = {Expanding the potential soil carbon sink: unraveling carbon sequestration accessory genes in vermicompost phages.},
journal = {Applied and environmental microbiology},
volume = {91},
number = {4},
pages = {e0029625},
doi = {10.1128/aem.00296-25},
pmid = {40084893},
issn = {1098-5336},
support = {42277115, 42177113, 42277418//National Natural Science Foundation of China/ ; Modern Agriculture BE2022322//Key P&D Project of Jiangshu Province/ ; 2024M761435//China Postdoctoral Science Foundation/ ; },
mesh = {*Bacteriophages/genetics/metabolism ; *Soil Microbiology ; Composting ; Manure/microbiology ; *Carbon Sequestration ; *Soil/chemistry ; Swine ; *Bacteria/metabolism/genetics/virology ; Animals ; *Microbiota ; Carbon/metabolism ; },
abstract = {The compost microbiome is important in regulating soil carbon sequestration. However, there is limited information concerning phage communities and phage-encoded auxiliary metabolic genes (AMGs) in compost-applied soils. We combined metagenomics and meta-viromes to explore the potential role of bacterial and phage communities in carbon sequestration in the compost microbiome. The experiment comprised swine manure compost (SW) and vermicompost (VE) applied to the soil along with a control treatment (CK). The bacterial community richness decreased after swine manure application and increased after vermicomposting compared to the control treatment. The phage community in the vermicompost-applied soil was dominated (63.1%) by temperate phages. In comparison, the communities of the swine manure compost-applied soil (92.7%) and control treatments (75.4%) were dominated by virulent phages. Phage-encoded carbon sequestration AMGs were detected in all three treatments, with significant enrichment in the vermicompost-applied soil. The average carbon sequestration potential (the coverage ratio of phage AMGs:total genes) of phage AMGs (aceF, GT11, and GT6) in the vermicompost-applied soil (65.18%) was greater than in the swine manure-applied (0) and control soils (50.21%). The results highlight the role of phage-encoded AMGs in improving soil carbon sequestration in vermicompost-applied soil. The findings provide new avenues for increasing soil carbon sequestration.IMPORTANCEThe phage-bacteria interactions have a significant impact on the global carbon cycle. Soil microbial carbon sequestration is a process in combination withcarbon sequestration genes and growth activity. This is the first study aimed at understanding the carbon sequestration potential of phage communities in vermicompost. The results of this study provide variations in carbon sequestration genes in vermicompost microbial communities, and some novel phage auxiliary metabolic genes were revealed to assist bacterial communities to increase soil carbon sequestration potential. Our results highlight the importance of phages in soil carbon sequestration from the perspective of phage-bacterial community interactions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Bacteriophages/genetics/metabolism
*Soil Microbiology
Composting
Manure/microbiology
*Carbon Sequestration
*Soil/chemistry
Swine
*Bacteria/metabolism/genetics/virology
Animals
*Microbiota
Carbon/metabolism
RevDate: 2025-04-23
CmpDate: 2025-04-23
Effects of post-adulthood environmental hygiene improvement on gut microbiota and immune tolerance in mice.
Applied and environmental microbiology, 91(4):e0247724.
UNLABELLED: Changes in diet, cleanliness, stress, and exercise patterns may contribute to the disappearance of various gut microbes in humans who relocate to developed countries from developing countries. To explore the impact of environmental cleanliness on the gut microbiota, adult mice housed in a general animal room were divided into three groups. The control group was subjected to an unchanged living environment, SPF mice were moved to a specific pathogen-free (SPF) animal room with higher environmental cleanliness, and SPFL (specific pathogen-free specific with a fecal leakage grid) mice were moved to the SPF animal room and reared in cages with the function of preventing mice from eating feces as much as possible. Metagenome sequencing results showed that the gut microbial diversity decreased after the environmental change, accompanied by a substantial loss in gut microbiota, including genera known to have protective effects against allergies and those involved in short-chain fatty acid production. Additionally, the abundance of functional genes involved in short-chain fatty acid metabolism, amino acid synthesis, vitamin metabolism, flagellar assembly, and bacterial chemotaxis decreased. The environmental hygiene improvement also resulted in significant increases in total serum IgE, IL-4, IL-5, and IL-13 levels in mice with artificially induced chronic inflammatory dermatosis. Compared with SPF mice, preventing mice from eating feces as much as possible decreased the gut microbial diversity but did not markedly change functional gene expression or total serum cytokine levels.
IMPORTANCE: Research has indicated that the human gut microbial diversity gradually decreases, while the prevalence of allergic diseases increases after movement from developing countries to developed countries. A healthy gut microbiota is necessary for proper human immune function. Movement from undeveloped to developed regions is often accompanied by an increase in environmental cleanliness. However, whether changes in environmental cleanliness are an important factor contributing to the decreased gut microbial diversity and increased prevalence of allergic diseases has not been reported. This study demonstrates the impact of increased environmental cleanliness on gut microbiota and susceptibility to allergic diseases and contributes to a better understanding of the increased incidence rate of various chronic diseases.
Additional Links: PMID-40047424
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40047424,
year = {2025},
author = {Li, N and Li, M and Zhang, H and Bai, Z and Fei, Z and Dong, Y and Zhang, X and Xiao, P and Sun, X and Zhou, D},
title = {Effects of post-adulthood environmental hygiene improvement on gut microbiota and immune tolerance in mice.},
journal = {Applied and environmental microbiology},
volume = {91},
number = {4},
pages = {e0247724},
doi = {10.1128/aem.02477-24},
pmid = {40047424},
issn = {1098-5336},
support = {31770540//The Natural Science Foundation of China/ ; BE2018663//The Key Research Program of Jiangsu/ ; },
mesh = {Animals ; *Gastrointestinal Microbiome ; Mice ; *Immune Tolerance ; *Hygiene ; Specific Pathogen-Free Organisms ; Feces/microbiology ; Male ; Bacteria/classification/genetics/isolation & purification ; Housing, Animal ; },
abstract = {UNLABELLED: Changes in diet, cleanliness, stress, and exercise patterns may contribute to the disappearance of various gut microbes in humans who relocate to developed countries from developing countries. To explore the impact of environmental cleanliness on the gut microbiota, adult mice housed in a general animal room were divided into three groups. The control group was subjected to an unchanged living environment, SPF mice were moved to a specific pathogen-free (SPF) animal room with higher environmental cleanliness, and SPFL (specific pathogen-free specific with a fecal leakage grid) mice were moved to the SPF animal room and reared in cages with the function of preventing mice from eating feces as much as possible. Metagenome sequencing results showed that the gut microbial diversity decreased after the environmental change, accompanied by a substantial loss in gut microbiota, including genera known to have protective effects against allergies and those involved in short-chain fatty acid production. Additionally, the abundance of functional genes involved in short-chain fatty acid metabolism, amino acid synthesis, vitamin metabolism, flagellar assembly, and bacterial chemotaxis decreased. The environmental hygiene improvement also resulted in significant increases in total serum IgE, IL-4, IL-5, and IL-13 levels in mice with artificially induced chronic inflammatory dermatosis. Compared with SPF mice, preventing mice from eating feces as much as possible decreased the gut microbial diversity but did not markedly change functional gene expression or total serum cytokine levels.
IMPORTANCE: Research has indicated that the human gut microbial diversity gradually decreases, while the prevalence of allergic diseases increases after movement from developing countries to developed countries. A healthy gut microbiota is necessary for proper human immune function. Movement from undeveloped to developed regions is often accompanied by an increase in environmental cleanliness. However, whether changes in environmental cleanliness are an important factor contributing to the decreased gut microbial diversity and increased prevalence of allergic diseases has not been reported. This study demonstrates the impact of increased environmental cleanliness on gut microbiota and susceptibility to allergic diseases and contributes to a better understanding of the increased incidence rate of various chronic diseases.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome
Mice
*Immune Tolerance
*Hygiene
Specific Pathogen-Free Organisms
Feces/microbiology
Male
Bacteria/classification/genetics/isolation & purification
Housing, Animal
RevDate: 2025-04-23
CmpDate: 2025-04-23
Maternal dysbiosis produces long-lasting behavioral changes in offspring.
Molecular psychiatry, 30(5):1847-1858.
Advanced maternal age (AMA) is defined as a pregnancy in a woman older than 35 years of age. AMA increases the risk for both maternal and neonatal complications, including miscarriage and stillbirth. AMA has also been linked to neurodevelopmental and neuropsychiatric disorders in the offspring. Recent studies have found that age-associated compositional shifts in the gut microbiota contribute to altered microbial metabolism and enhanced inflammation in the host. We investigated the specific contribution of the maternal microbiome on pregnancy outcomes and offspring behavior by recolonizing young female mice with aged female microbiome prior to pregnancy. We discovered that pre-pregnancy colonization of young dams with microbiome from aged female donors significantly increased fetal loss. There were significant differences in the composition of the gut microbiome in pups born from dams recolonized with aged female biome that persisted through middle age. Offspring born from dams colonized with aged microbiome also had significant changes in levels of neurotransmitters and metabolites in the blood and the brain. Adult offspring from dams colonized with an aged microbiome displayed persistent depressive- and anxiety-like phenotypes. Collectively, these results demonstrate that age-related changes in the composition of the maternal gut microbiome contribute to chronic alterations in the behavior and physiology of offspring. This work highlights the potential of microbiome-targeted approaches, even prior to birth, may reduce the risk of neuropsychiatric disorders.
Additional Links: PMID-39443733
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid39443733,
year = {2025},
author = {Hudobenko, J and Di Gesù, CM and Mooz, PR and Petrosino, J and Putluri, N and Ganesh, BP and Rebeles, K and Blixt, FW and Venna, VR and McCullough, LD},
title = {Maternal dysbiosis produces long-lasting behavioral changes in offspring.},
journal = {Molecular psychiatry},
volume = {30},
number = {5},
pages = {1847-1858},
pmid = {39443733},
issn = {1476-5578},
support = {RF1AG058463//U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)/ ; R35NS132265//U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)/ ; MERIT Award//American Heart Association (American Heart Association, Inc.)/ ; },
mesh = {Animals ; Female ; Gastrointestinal Microbiome/physiology ; Pregnancy ; *Dysbiosis/microbiology/metabolism/complications/physiopathology ; Mice ; Mice, Inbred C57BL ; Prenatal Exposure Delayed Effects ; Behavior, Animal/physiology ; Anxiety ; Brain/metabolism ; Male ; Animals, Newborn ; Depression ; },
abstract = {Advanced maternal age (AMA) is defined as a pregnancy in a woman older than 35 years of age. AMA increases the risk for both maternal and neonatal complications, including miscarriage and stillbirth. AMA has also been linked to neurodevelopmental and neuropsychiatric disorders in the offspring. Recent studies have found that age-associated compositional shifts in the gut microbiota contribute to altered microbial metabolism and enhanced inflammation in the host. We investigated the specific contribution of the maternal microbiome on pregnancy outcomes and offspring behavior by recolonizing young female mice with aged female microbiome prior to pregnancy. We discovered that pre-pregnancy colonization of young dams with microbiome from aged female donors significantly increased fetal loss. There were significant differences in the composition of the gut microbiome in pups born from dams recolonized with aged female biome that persisted through middle age. Offspring born from dams colonized with aged microbiome also had significant changes in levels of neurotransmitters and metabolites in the blood and the brain. Adult offspring from dams colonized with an aged microbiome displayed persistent depressive- and anxiety-like phenotypes. Collectively, these results demonstrate that age-related changes in the composition of the maternal gut microbiome contribute to chronic alterations in the behavior and physiology of offspring. This work highlights the potential of microbiome-targeted approaches, even prior to birth, may reduce the risk of neuropsychiatric disorders.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Female
Gastrointestinal Microbiome/physiology
Pregnancy
*Dysbiosis/microbiology/metabolism/complications/physiopathology
Mice
Mice, Inbred C57BL
Prenatal Exposure Delayed Effects
Behavior, Animal/physiology
Anxiety
Brain/metabolism
Male
Animals, Newborn
Depression
RevDate: 2025-04-22
CmpDate: 2025-04-22
Convergent musk biosynthesis across host and microbiota in musk deer and muskrat.
Zoological research, 46(3):505-517.
Mammalian scent glands mediate species-specific chemical communication, yet the mechanistic basis for convergent musk production remain incompletely understood. Forest musk deer and muskrat have independently evolved specialized musk-secreting glands, representing a striking case of convergent evolution. Through an integrated multi-omics approach, this study identified cyclopentadecanone as a shared key metabolic precursor in musk from both forest musk deer and muskrat, although downstream metabolite profiles diverged between the two lineages. Single-cell RNA sequencing revealed that these specialized apocrine glands possessed unique secretory architecture and exhibited transcriptional profiles associated with periodic musk production, distinct from those in conventional apocrine glands. Convergent features were evident at the cellular level, where acinar, ductal, and basal epithelial subtypes showed parallel molecular signatures across both taxa. Notably, acinar cells in both species expressed common genes involved in fatty acid and glycerolipid metabolism (e.g., ACSBG1, HSD17B12, HACD2, and HADHA), suggesting a conserved molecular framework for musk precursor biosynthesis. Metagenomic analysis of musk samples further revealed parallel microbial community structures dominated by Corynebacterium and enriched in lipid metabolic pathways. These findings suggest multi-level convergence in musk biosynthesis, from molecular pathways to microbial communities, providing novel insights into mammalian chemical signaling and artificial musk production.
Additional Links: PMID-40259731
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40259731,
year = {2025},
author = {Sun, YS and Zhao, L and Zheng, CL and Yan, XT and Li, Y and Gao, XL and Xue, TF and Zhang, YM and Li, ZP and Heller, R and Feng, CG and Xu, C and Wang, K and Qiu, Q},
title = {Convergent musk biosynthesis across host and microbiota in musk deer and muskrat.},
journal = {Zoological research},
volume = {46},
number = {3},
pages = {505-517},
doi = {10.24272/j.issn.2095-8137.2025.094},
pmid = {40259731},
issn = {2095-8137},
mesh = {Animals ; *Deer/microbiology/metabolism ; *Fatty Acids, Monounsaturated/metabolism ; *Microbiota ; Scent Glands/metabolism ; *Arvicolinae/microbiology/metabolism ; },
abstract = {Mammalian scent glands mediate species-specific chemical communication, yet the mechanistic basis for convergent musk production remain incompletely understood. Forest musk deer and muskrat have independently evolved specialized musk-secreting glands, representing a striking case of convergent evolution. Through an integrated multi-omics approach, this study identified cyclopentadecanone as a shared key metabolic precursor in musk from both forest musk deer and muskrat, although downstream metabolite profiles diverged between the two lineages. Single-cell RNA sequencing revealed that these specialized apocrine glands possessed unique secretory architecture and exhibited transcriptional profiles associated with periodic musk production, distinct from those in conventional apocrine glands. Convergent features were evident at the cellular level, where acinar, ductal, and basal epithelial subtypes showed parallel molecular signatures across both taxa. Notably, acinar cells in both species expressed common genes involved in fatty acid and glycerolipid metabolism (e.g., ACSBG1, HSD17B12, HACD2, and HADHA), suggesting a conserved molecular framework for musk precursor biosynthesis. Metagenomic analysis of musk samples further revealed parallel microbial community structures dominated by Corynebacterium and enriched in lipid metabolic pathways. These findings suggest multi-level convergence in musk biosynthesis, from molecular pathways to microbial communities, providing novel insights into mammalian chemical signaling and artificial musk production.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Deer/microbiology/metabolism
*Fatty Acids, Monounsaturated/metabolism
*Microbiota
Scent Glands/metabolism
*Arvicolinae/microbiology/metabolism
RevDate: 2025-04-21
CmpDate: 2025-04-21
Systems genetics uncovers associations among host amylase locus, gut microbiome, and metabolic traits in mice.
Microbiome, 13(1):101.
BACKGROUND: Population studies have revealed associations between host genetic and gut microbiome in humans and mice. However, the molecular bases for how host genetic variation impacts the gut microbial community and bacterial metabolic niches remain largely unknown.
RESULTS: We leveraged 90 inbred hyperlipidemic mouse strains from the hybrid mouse diversity panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these, we detected a genetic locus surrounding multiple amylase genes that were associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar degrading capabilities. The genetic variants at the amylase gene locus were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes.
CONCLUSIONS: This work reveals novel relationships among host genetic variation, gut microbial enterotypes, and host metabolic traits and supports the notion that variation of host amylase may represent a key determinant of gut microbiome in mice. Video Abstract.
Additional Links: PMID-40259344
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40259344,
year = {2025},
author = {Zhang, Q and Hutchison, ER and Pan, C and Warren, MF and Keller, MP and Attie, AD and Lusis, AJ and Rey, FE},
title = {Systems genetics uncovers associations among host amylase locus, gut microbiome, and metabolic traits in mice.},
journal = {Microbiome},
volume = {13},
number = {1},
pages = {101},
pmid = {40259344},
issn = {2049-2618},
mesh = {Animals ; Mice ; *Gastrointestinal Microbiome/genetics ; *Amylases/genetics/metabolism ; Genome-Wide Association Study ; Metagenomics/methods ; Male ; Bacteroidetes/genetics/classification/isolation & purification ; Mendelian Randomization Analysis ; Firmicutes/genetics/classification/isolation & purification ; Cecum/microbiology ; },
abstract = {BACKGROUND: Population studies have revealed associations between host genetic and gut microbiome in humans and mice. However, the molecular bases for how host genetic variation impacts the gut microbial community and bacterial metabolic niches remain largely unknown.
RESULTS: We leveraged 90 inbred hyperlipidemic mouse strains from the hybrid mouse diversity panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these, we detected a genetic locus surrounding multiple amylase genes that were associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar degrading capabilities. The genetic variants at the amylase gene locus were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes.
CONCLUSIONS: This work reveals novel relationships among host genetic variation, gut microbial enterotypes, and host metabolic traits and supports the notion that variation of host amylase may represent a key determinant of gut microbiome in mice. Video Abstract.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Mice
*Gastrointestinal Microbiome/genetics
*Amylases/genetics/metabolism
Genome-Wide Association Study
Metagenomics/methods
Male
Bacteroidetes/genetics/classification/isolation & purification
Mendelian Randomization Analysis
Firmicutes/genetics/classification/isolation & purification
Cecum/microbiology
RevDate: 2025-04-22
CmpDate: 2025-04-22
Global Geographic Patterns of Soil Microbial Degradation Potential for Polycyclic Aromatic Hydrocarbons.
Environmental science & technology, 59(15):7550-7560.
Polycyclic aromatic hydrocarbons (PAHs) are toxic and persistent pollutants that are widely distributed in the environment. PAHs are toxic to microorganisms and pose ecological risks. Bacteria encode enzymes for PAH degradation through specific genes, thereby mitigating PAH pollution. However, due to PAHs' complexity, information on the global degradation potential, diversity, and associated risks of PAH-degrading microbes in soils is lacking. In this study, we analyzed 121 PAH-degrading genes and selected 33 as marker genes to predict the degradation potential within the soil microbiome. By constructing a Hidden Markov Model, we identified 4990 species carrying PAH-degrading genes in 40,039 soil metagenomic assembly genomes, with Burkholderiaceae and Stellaceae emerging as high-potential degraders. We demonstrated that the candidate PAH degraders predominantly emerged in artificial soil and farmland, with significantly fewer present in extreme environments, driven by factors such as average annual rainfall, organic carbon, and human modification of terrestrial systems. Furthermore, we comprehensively quantified the potential risks of each potential host in future practical applications using three indicators (antibiotic resistance genes, virulence factors, and pathogenic bacteria). We found that the degrader Stellaceae has significant application prospects. Our research will help determine the biosynthetic potential of PAH-degrading enzymes globally and further identify potential PAH-degrading bacteria at lower risk.
Additional Links: PMID-40223703
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40223703,
year = {2025},
author = {Gao, M and Zhang, Q and Chen, B and Lei, C and Xia, Q and Sun, L and Li, T and Zhou, NY and Lu, T and Qian, H},
title = {Global Geographic Patterns of Soil Microbial Degradation Potential for Polycyclic Aromatic Hydrocarbons.},
journal = {Environmental science & technology},
volume = {59},
number = {15},
pages = {7550-7560},
doi = {10.1021/acs.est.5c00306},
pmid = {40223703},
issn = {1520-5851},
mesh = {*Polycyclic Aromatic Hydrocarbons/metabolism ; *Soil Microbiology ; Biodegradation, Environmental ; Soil/chemistry ; Soil Pollutants/metabolism ; Bacteria/metabolism ; Microbiota ; },
abstract = {Polycyclic aromatic hydrocarbons (PAHs) are toxic and persistent pollutants that are widely distributed in the environment. PAHs are toxic to microorganisms and pose ecological risks. Bacteria encode enzymes for PAH degradation through specific genes, thereby mitigating PAH pollution. However, due to PAHs' complexity, information on the global degradation potential, diversity, and associated risks of PAH-degrading microbes in soils is lacking. In this study, we analyzed 121 PAH-degrading genes and selected 33 as marker genes to predict the degradation potential within the soil microbiome. By constructing a Hidden Markov Model, we identified 4990 species carrying PAH-degrading genes in 40,039 soil metagenomic assembly genomes, with Burkholderiaceae and Stellaceae emerging as high-potential degraders. We demonstrated that the candidate PAH degraders predominantly emerged in artificial soil and farmland, with significantly fewer present in extreme environments, driven by factors such as average annual rainfall, organic carbon, and human modification of terrestrial systems. Furthermore, we comprehensively quantified the potential risks of each potential host in future practical applications using three indicators (antibiotic resistance genes, virulence factors, and pathogenic bacteria). We found that the degrader Stellaceae has significant application prospects. Our research will help determine the biosynthetic potential of PAH-degrading enzymes globally and further identify potential PAH-degrading bacteria at lower risk.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Polycyclic Aromatic Hydrocarbons/metabolism
*Soil Microbiology
Biodegradation, Environmental
Soil/chemistry
Soil Pollutants/metabolism
Bacteria/metabolism
Microbiota
RevDate: 2025-04-22
CmpDate: 2025-04-22
Association of Microbial Networks with the Coastal Seafloor Macrofauna Ecological State.
Environmental science & technology, 59(15):7517-7529.
Recent evidence suggests that there is a major switch in coastal seafloor microbial ecology already at a mildly deteriorated macrofaunal state. This knowledge is of critical value in the management and conservation of the coastal seafloor. We therefore aimed to determine the relationships between seafloor microbiota and macrofauna on a regional scale. We compared prokaryote, macrofauna, chemical, and geographical data from 1546 seafloor samples, which varied in their exposure to aquaculture activities along the Norwegian and Icelandic coasts. We found that the seafloor samples contained either a network centralized by a sulfur oxidizer (42.4% of samples, n = 656) or a network centralized by an archaeal ammonium oxidizer (44.0% of samples, n = 681). Very few samples contained neither network (9.8% of samples, n = 151) or both (3.8% of samples, n = 58). Samples with a sulfur oxidizer network had a 10-fold higher risk of macrofauna loss (odds ratios, 95% CI: 9.5 to 15.6), while those with an ammonium oxidizer network had a 10-fold lower risk (95% CI: 0.068 to 0.11). The sulfur oxidizer network was negatively correlated to distance from Norwegian aquaculture sites (Spearman rho = -0.42, p < 0.01) and was present in all Icelandic samples (n = 274). The ammonium oxidizer network was absent from Icelandic samples and positively correlated to distance from Norwegian aquaculture sites (Spearman rho = 0.67, p < 0.01). Based on 356 high-quality metagenome-assembled genomes (MAGs), we found that bicarbonate-dependent carbon fixation and low-affinity oxygen respiration were associated with the ammonium oxidizer network, while the sulfur oxidizer network was associated with ammonium retention, sulfur metabolism, and high-affinity oxygen respiration. In conclusion, our findings highlight the critical roles of microbial networks centralized by sulfur and ammonium oxidizers in mild macrofauna deterioration, which should be included as an essential part of seafloor surveillance.
Additional Links: PMID-40214404
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40214404,
year = {2025},
author = {Nilsen, T and Pettersen, R and Keeley, NB and Ray, JL and Majaneva, S and Stokkan, M and Hervik, A and Angell, IL and Snipen, LG and Sundt, MØ and Rudi, K},
title = {Association of Microbial Networks with the Coastal Seafloor Macrofauna Ecological State.},
journal = {Environmental science & technology},
volume = {59},
number = {15},
pages = {7517-7529},
doi = {10.1021/acs.est.4c12464},
pmid = {40214404},
issn = {1520-5851},
mesh = {Microbiota ; Norway ; Iceland ; Animals ; Ecosystem ; Archaea ; Aquaculture ; },
abstract = {Recent evidence suggests that there is a major switch in coastal seafloor microbial ecology already at a mildly deteriorated macrofaunal state. This knowledge is of critical value in the management and conservation of the coastal seafloor. We therefore aimed to determine the relationships between seafloor microbiota and macrofauna on a regional scale. We compared prokaryote, macrofauna, chemical, and geographical data from 1546 seafloor samples, which varied in their exposure to aquaculture activities along the Norwegian and Icelandic coasts. We found that the seafloor samples contained either a network centralized by a sulfur oxidizer (42.4% of samples, n = 656) or a network centralized by an archaeal ammonium oxidizer (44.0% of samples, n = 681). Very few samples contained neither network (9.8% of samples, n = 151) or both (3.8% of samples, n = 58). Samples with a sulfur oxidizer network had a 10-fold higher risk of macrofauna loss (odds ratios, 95% CI: 9.5 to 15.6), while those with an ammonium oxidizer network had a 10-fold lower risk (95% CI: 0.068 to 0.11). The sulfur oxidizer network was negatively correlated to distance from Norwegian aquaculture sites (Spearman rho = -0.42, p < 0.01) and was present in all Icelandic samples (n = 274). The ammonium oxidizer network was absent from Icelandic samples and positively correlated to distance from Norwegian aquaculture sites (Spearman rho = 0.67, p < 0.01). Based on 356 high-quality metagenome-assembled genomes (MAGs), we found that bicarbonate-dependent carbon fixation and low-affinity oxygen respiration were associated with the ammonium oxidizer network, while the sulfur oxidizer network was associated with ammonium retention, sulfur metabolism, and high-affinity oxygen respiration. In conclusion, our findings highlight the critical roles of microbial networks centralized by sulfur and ammonium oxidizers in mild macrofauna deterioration, which should be included as an essential part of seafloor surveillance.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Microbiota
Norway
Iceland
Animals
Ecosystem
Archaea
Aquaculture
RevDate: 2025-04-22
CmpDate: 2025-04-22
Rumen microbes affect the somatic cell counts of dairy cows by modulating glutathione metabolism.
mSystems, 10(4):e0109324.
Healthy mammary glands are essential for high-quality milk production in the dairy industry. The relationship between somatic cell counts (SCCs), rumen fermentation, and microbiota interactions remains unclear. This study integrated physiological indicators, high-throughput 16S rRNA gene sequencing, and metagenomics data analysis to investigate the mechanisms linking rumen microbes and mastitis and to evaluate the changes in milk production and serum cytokine levels in cows with low (L-SCC) and high (H-SCC) somatic cell counts. Compared with the L-SCC group, the H-SCC group exhibited significantly lower lactose and fat contents in milk, reduced rumen fermentation product levels, and increased abundances of Bacteroidetes, Firmicutes, Lachnospiraceae, Prevotella, and Rumiclostridium. Elevated serum levels of IgG2, IgM, IL-1β, IL-6, and TNF-ɑ in the H-SCC group indicated inflammation and rumen microbiota dysbiosis. Functional analysis of microbial communities revealed significant enrichment in pathways related to glutathione metabolism, thyroid hormone synthesis, hypertrophic cardiomyopathy (HCM), the phosphotransferase system (PTS), the P53 signaling pathway, and the Jak-STAT signaling pathway. Correlation network analysis showed that changes in bacterial families, such as Rikenellaceae, Muribaculaceae, and Prevotellaceae, were associated with cytokines, rumen fermentation, and milk quality. The study highlights the interaction between rumen microbiota homeostasis and mammary gland health, indicating that rumen fermentation status influences serum inflammation and milk quality. Modulating rumen fermentation to enhance mammary gland immune function presents a viable strategy for sustainable dairy industry development with long-lived, highly productive cows.IMPORTANCEHigh somatic cell counts (SCCs) are a key biomarker of mastitis and are associated with decreased milk production and significant economic losses in dairy farming. This study systematically examines the relationship between elevated SCCs, rumen microbial dysbiosis, and host inflammatory responses, shedding light on the intricate interplay between microbial ecosystems and host physiology. The findings highlight the potential for microbiota-targeted interventions to reduce inflammation, improve milk composition, and enhance dairy cow productivity. Rather than presuming a direct causative link between SCC-associated dysbiosis and inflammation, this research focuses on their interdependent dynamics, offering a nuanced understanding of the complex biological mechanisms involved. This work advances knowledge of host-microbiota interactions in livestock, providing practical insights for the development of innovative strategies to manage mastitis and improve overall herd health. By adhering to One Health principles, this study underscores the significance of sustainable agricultural practices that prioritize animal welfare, environmental stewardship, and food security. These findings establish a robust foundation for future research into microbiota-driven solutions aimed at enhancing the health and productivity of dairy cattle.
Additional Links: PMID-40105325
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40105325,
year = {2025},
author = {Zhang, H and Lu, T and Guo, S and He, T and Shin, M-K and Luo, C and Tong, J and Zhang, Y},
title = {Rumen microbes affect the somatic cell counts of dairy cows by modulating glutathione metabolism.},
journal = {mSystems},
volume = {10},
number = {4},
pages = {e0109324},
doi = {10.1128/msystems.01093-24},
pmid = {40105325},
issn = {2379-5077},
support = {32272904//National Natural Science Foundation of China/ ; 32373086//National Natural Science Foundation of China/ ; },
mesh = {Animals ; Cattle ; *Rumen/microbiology/metabolism ; Female ; Milk/metabolism/cytology ; *Glutathione/metabolism ; Cell Count ; Cytokines/blood ; *Gastrointestinal Microbiome ; Microbiota ; Lactation ; Mastitis, Bovine/microbiology/metabolism ; Dysbiosis ; },
abstract = {Healthy mammary glands are essential for high-quality milk production in the dairy industry. The relationship between somatic cell counts (SCCs), rumen fermentation, and microbiota interactions remains unclear. This study integrated physiological indicators, high-throughput 16S rRNA gene sequencing, and metagenomics data analysis to investigate the mechanisms linking rumen microbes and mastitis and to evaluate the changes in milk production and serum cytokine levels in cows with low (L-SCC) and high (H-SCC) somatic cell counts. Compared with the L-SCC group, the H-SCC group exhibited significantly lower lactose and fat contents in milk, reduced rumen fermentation product levels, and increased abundances of Bacteroidetes, Firmicutes, Lachnospiraceae, Prevotella, and Rumiclostridium. Elevated serum levels of IgG2, IgM, IL-1β, IL-6, and TNF-ɑ in the H-SCC group indicated inflammation and rumen microbiota dysbiosis. Functional analysis of microbial communities revealed significant enrichment in pathways related to glutathione metabolism, thyroid hormone synthesis, hypertrophic cardiomyopathy (HCM), the phosphotransferase system (PTS), the P53 signaling pathway, and the Jak-STAT signaling pathway. Correlation network analysis showed that changes in bacterial families, such as Rikenellaceae, Muribaculaceae, and Prevotellaceae, were associated with cytokines, rumen fermentation, and milk quality. The study highlights the interaction between rumen microbiota homeostasis and mammary gland health, indicating that rumen fermentation status influences serum inflammation and milk quality. Modulating rumen fermentation to enhance mammary gland immune function presents a viable strategy for sustainable dairy industry development with long-lived, highly productive cows.IMPORTANCEHigh somatic cell counts (SCCs) are a key biomarker of mastitis and are associated with decreased milk production and significant economic losses in dairy farming. This study systematically examines the relationship between elevated SCCs, rumen microbial dysbiosis, and host inflammatory responses, shedding light on the intricate interplay between microbial ecosystems and host physiology. The findings highlight the potential for microbiota-targeted interventions to reduce inflammation, improve milk composition, and enhance dairy cow productivity. Rather than presuming a direct causative link between SCC-associated dysbiosis and inflammation, this research focuses on their interdependent dynamics, offering a nuanced understanding of the complex biological mechanisms involved. This work advances knowledge of host-microbiota interactions in livestock, providing practical insights for the development of innovative strategies to manage mastitis and improve overall herd health. By adhering to One Health principles, this study underscores the significance of sustainable agricultural practices that prioritize animal welfare, environmental stewardship, and food security. These findings establish a robust foundation for future research into microbiota-driven solutions aimed at enhancing the health and productivity of dairy cattle.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
*Rumen/microbiology/metabolism
Female
Milk/metabolism/cytology
*Glutathione/metabolism
Cell Count
Cytokines/blood
*Gastrointestinal Microbiome
Microbiota
Lactation
Mastitis, Bovine/microbiology/metabolism
Dysbiosis
RevDate: 2025-04-21
CmpDate: 2025-04-21
Comparison of phage and plasmid populations in the gut microbiota between Parkinson's disease patients and controls.
Scientific reports, 15(1):13723.
The aging population worldwide is on the rise, leading to a higher number of Parkinson's disease (PD) cases each year. PD is presently the second most prevalent neurodegenerative disease, affecting an estimated 7-10 million individuals globally. This research aimed to identify mobile genetic elements in human fecal samples using a shotgun metagenomics approach. We identified over 44,000 plasmid contigs and compared plasmid populations between PD patients (n = 68) and controls (n = 68). Significant associations emerged between groups (control vs PD) based on plasmid alpha and beta diversity. Moreover, the gene populations present on plasmids displayed marked differences in alpha and beta diversity between PD patients and controls. We identified a considerable number of phage contigs that were differentially abundant in the two groups. We also developed a predictive machine learning model based on phage abundance data, achieving a mean Area Under the Curve (AUC) of 0.74 with a standard deviation of 0.105 and a mean F1 score of 0.68 with a standard deviation of 0.14 across cross-validation folds, indicating moderate discriminatory power. Additionally, when tested on external data, the model yielded an AUC of 0.74 and an F1 score of 0.8, further demonstrating the predictive potential of phage populations in Parkinson's disease. Further, we improved the continuity and identification of the protein coding regions of the phage contigs by implementing alternative genetic codes.
Additional Links: PMID-40258842
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40258842,
year = {2025},
author = {Duru, IC and Lecomte, A and Laine, P and Shishido, TK and Suppula, J and Paulin, L and Scheperjans, F and Pereira, PAB and Auvinen, P},
title = {Comparison of phage and plasmid populations in the gut microbiota between Parkinson's disease patients and controls.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {13723},
pmid = {40258842},
issn = {2045-2322},
support = {NNF22OC0080109//Novo Nordisk Foundation/ ; },
mesh = {Humans ; *Parkinson Disease/microbiology/virology ; *Gastrointestinal Microbiome/genetics ; *Bacteriophages/genetics/isolation & purification ; Aged ; *Plasmids/genetics ; Male ; Female ; Middle Aged ; Feces/microbiology/virology ; Case-Control Studies ; Metagenomics/methods ; Machine Learning ; },
abstract = {The aging population worldwide is on the rise, leading to a higher number of Parkinson's disease (PD) cases each year. PD is presently the second most prevalent neurodegenerative disease, affecting an estimated 7-10 million individuals globally. This research aimed to identify mobile genetic elements in human fecal samples using a shotgun metagenomics approach. We identified over 44,000 plasmid contigs and compared plasmid populations between PD patients (n = 68) and controls (n = 68). Significant associations emerged between groups (control vs PD) based on plasmid alpha and beta diversity. Moreover, the gene populations present on plasmids displayed marked differences in alpha and beta diversity between PD patients and controls. We identified a considerable number of phage contigs that were differentially abundant in the two groups. We also developed a predictive machine learning model based on phage abundance data, achieving a mean Area Under the Curve (AUC) of 0.74 with a standard deviation of 0.105 and a mean F1 score of 0.68 with a standard deviation of 0.14 across cross-validation folds, indicating moderate discriminatory power. Additionally, when tested on external data, the model yielded an AUC of 0.74 and an F1 score of 0.8, further demonstrating the predictive potential of phage populations in Parkinson's disease. Further, we improved the continuity and identification of the protein coding regions of the phage contigs by implementing alternative genetic codes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Parkinson Disease/microbiology/virology
*Gastrointestinal Microbiome/genetics
*Bacteriophages/genetics/isolation & purification
Aged
*Plasmids/genetics
Male
Female
Middle Aged
Feces/microbiology/virology
Case-Control Studies
Metagenomics/methods
Machine Learning
RevDate: 2025-04-21
CmpDate: 2025-04-21
Distinct clusters of bacterial and fungal microbiota in end-stage liver cirrhosis correlate with antibiotic treatment, intestinal barrier impairment, and systemic inflammation.
Gut microbes, 17(1):2487209.
Decompensated liver cirrhosis (dLC) is associated with intestinal dysbiosis, however, underlying reasons and clinical consequences remain largely unexplored. We investigated bacterial and fungal microbiota, their relation with gut barrier integrity, inflammation, and cirrhosis-specific complications in dLC-patients. Competing-risk analyses were performed to investigate clinical outcomes within 90 days. Samples were prospectively collected from 95 dLC-patients between 2017 and 2022. Quantitative metagenomic analyses clustered patients into three groups (G1-G3) showing distinct microbial patterns. G1 (n = 39) displayed lowest diversity and highest Enterococcus abundance, G2 (n = 24) was dominated by Bifidobacteria, G3 (n = 29) was most diverse and clustered most closely with healthy controls (HC). Of note, bacterial concentrations were significantly lower in cirrhosis compared with HC, especially for G1 that also showed the lowest capacity to produce short chain fatty acids and secondary bile acids. Consequently, fungal overgrowth, dominated by Candida spp. (51.63%), was observed in G1. Moreover, G1-patients most frequently received antibiotics (n = 33; 86.8%), had highest plasma-levels of Zonulin (p = 0.044) and a proinflammatory cytokine profile along with numerically higher incidences of subsequent infections (p = 0.09). In conclusion, distinct bacterial clusters were observed at qualitative and quantitative levels and correlated with fungal abundances. Antibiotic treatment significantly contributed to dysbiosis, which translated into intestinal barrier impairment and systemic inflammation.
Additional Links: PMID-40255076
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40255076,
year = {2025},
author = {Buttler, L and Velázquez-Ramírez, DA and Tiede, A and Conradi, AM and Woltemate, S and Geffers, R and Bremer, B and Spielmann, V and Kahlhöfer, J and Kraft, ARM and Schlüter, D and Wedemeyer, H and Cornberg, M and Falk, C and Vital, M and Maasoumy, B},
title = {Distinct clusters of bacterial and fungal microbiota in end-stage liver cirrhosis correlate with antibiotic treatment, intestinal barrier impairment, and systemic inflammation.},
journal = {Gut microbes},
volume = {17},
number = {1},
pages = {2487209},
doi = {10.1080/19490976.2025.2487209},
pmid = {40255076},
issn = {1949-0984},
mesh = {Humans ; Male ; Female ; Middle Aged ; *Gastrointestinal Microbiome/drug effects ; *Bacteria/classification/genetics/isolation & purification/drug effects ; *Anti-Bacterial Agents/therapeutic use/adverse effects ; Aged ; Dysbiosis/microbiology ; *Fungi/classification/isolation & purification/genetics ; *Inflammation/microbiology ; *Liver Cirrhosis/microbiology ; *Mycobiome ; Prospective Studies ; Metagenomics ; Intestinal Mucosa/microbiology ; *End Stage Liver Disease/microbiology/drug therapy ; Adult ; },
abstract = {Decompensated liver cirrhosis (dLC) is associated with intestinal dysbiosis, however, underlying reasons and clinical consequences remain largely unexplored. We investigated bacterial and fungal microbiota, their relation with gut barrier integrity, inflammation, and cirrhosis-specific complications in dLC-patients. Competing-risk analyses were performed to investigate clinical outcomes within 90 days. Samples were prospectively collected from 95 dLC-patients between 2017 and 2022. Quantitative metagenomic analyses clustered patients into three groups (G1-G3) showing distinct microbial patterns. G1 (n = 39) displayed lowest diversity and highest Enterococcus abundance, G2 (n = 24) was dominated by Bifidobacteria, G3 (n = 29) was most diverse and clustered most closely with healthy controls (HC). Of note, bacterial concentrations were significantly lower in cirrhosis compared with HC, especially for G1 that also showed the lowest capacity to produce short chain fatty acids and secondary bile acids. Consequently, fungal overgrowth, dominated by Candida spp. (51.63%), was observed in G1. Moreover, G1-patients most frequently received antibiotics (n = 33; 86.8%), had highest plasma-levels of Zonulin (p = 0.044) and a proinflammatory cytokine profile along with numerically higher incidences of subsequent infections (p = 0.09). In conclusion, distinct bacterial clusters were observed at qualitative and quantitative levels and correlated with fungal abundances. Antibiotic treatment significantly contributed to dysbiosis, which translated into intestinal barrier impairment and systemic inflammation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Male
Female
Middle Aged
*Gastrointestinal Microbiome/drug effects
*Bacteria/classification/genetics/isolation & purification/drug effects
*Anti-Bacterial Agents/therapeutic use/adverse effects
Aged
Dysbiosis/microbiology
*Fungi/classification/isolation & purification/genetics
*Inflammation/microbiology
*Liver Cirrhosis/microbiology
*Mycobiome
Prospective Studies
Metagenomics
Intestinal Mucosa/microbiology
*End Stage Liver Disease/microbiology/drug therapy
Adult
RevDate: 2025-04-21
CmpDate: 2025-04-21
TaxSEA: rapid interpretation of microbiome alterations using taxon set enrichment analysis and public databases.
Briefings in bioinformatics, 26(2):.
Microbial communities are essential regulators of ecosystem function, with their composition commonly assessed through DNA sequencing. Most current tools focus on detecting changes among individual taxa (e.g. species or genera), however in other omics fields, such as transcriptomics, enrichment analyses like gene set enrichment analysis are commonly used to uncover patterns not seen with individual features. Here, we introduce TaxSEA, a taxon set enrichment analysis tool available as an R package, a web portal (https://shiny.taxsea.app), and a Python package. TaxSEA integrates taxon sets from five public microbiota databases (BugSigDB, MiMeDB, GutMGene, mBodyMap, and GMRepoV2) while also allowing users to incorporate custom sets such as taxonomic groupings. In silico assessments show TaxSEA is accurate across a range of set sizes. When applied to differential abundance analysis output from inflammatory bowel disease and type 2 diabetes metagenomic data, TaxSEA can rapidly identify changes in functional groups corresponding to known associations. We also show that TaxSEA is robust to the choice of differential abundance analysis package. In summary, TaxSEA enables researchers to efficiently contextualize their findings within the broader microbiome literature, facilitating rapid interpretation, and advancing understanding of microbiome-host and environmental interactions.
Additional Links: PMID-40254830
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40254830,
year = {2025},
author = {Pham, CM and Rankin, TJ and Stinear, TP and Walsh, CJ and Ryan, FJ},
title = {TaxSEA: rapid interpretation of microbiome alterations using taxon set enrichment analysis and public databases.},
journal = {Briefings in bioinformatics},
volume = {26},
number = {2},
pages = {},
doi = {10.1093/bib/bbaf173},
pmid = {40254830},
issn = {1477-4054},
support = {GNT1194325//National Health and Medical Research Council of Australia/ ; },
mesh = {*Microbiota ; Humans ; *Software ; *Metagenomics/methods ; Diabetes Mellitus, Type 2/microbiology/genetics ; *Databases, Genetic ; *Computational Biology/methods ; Inflammatory Bowel Diseases/microbiology/genetics ; Metagenome ; },
abstract = {Microbial communities are essential regulators of ecosystem function, with their composition commonly assessed through DNA sequencing. Most current tools focus on detecting changes among individual taxa (e.g. species or genera), however in other omics fields, such as transcriptomics, enrichment analyses like gene set enrichment analysis are commonly used to uncover patterns not seen with individual features. Here, we introduce TaxSEA, a taxon set enrichment analysis tool available as an R package, a web portal (https://shiny.taxsea.app), and a Python package. TaxSEA integrates taxon sets from five public microbiota databases (BugSigDB, MiMeDB, GutMGene, mBodyMap, and GMRepoV2) while also allowing users to incorporate custom sets such as taxonomic groupings. In silico assessments show TaxSEA is accurate across a range of set sizes. When applied to differential abundance analysis output from inflammatory bowel disease and type 2 diabetes metagenomic data, TaxSEA can rapidly identify changes in functional groups corresponding to known associations. We also show that TaxSEA is robust to the choice of differential abundance analysis package. In summary, TaxSEA enables researchers to efficiently contextualize their findings within the broader microbiome literature, facilitating rapid interpretation, and advancing understanding of microbiome-host and environmental interactions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Microbiota
Humans
*Software
*Metagenomics/methods
Diabetes Mellitus, Type 2/microbiology/genetics
*Databases, Genetic
*Computational Biology/methods
Inflammatory Bowel Diseases/microbiology/genetics
Metagenome
RevDate: 2025-04-20
Probiotic Lactobacillus rhamnosus GG Alleviates Prehypertension and Restores Gut Health and Microbiota in NaCl-Induced Prehypertensive Rats.
Probiotics and antimicrobial proteins [Epub ahead of print].
Probiotics could be used as adjuvant treatments in prehypertension management to restore gut microbiota dysbiosis caused by a high-salt diet. This study investigated the antihypertensive effects of the probiotic Lactobacillus rhamnosus strain GG (LGG) on high-salt diet-induced prehypertensive rats. Eighteen Sprague-Dawley rats were assigned equally into three groups: normotensive fed on a normal diet (ND), prehypertensive induced on a 4% NaCl high-salt diet (HSD), and prehypertensive induced on an HSD treated with LGG at 1 × 10[9] CFU daily for 8 weeks (LGG). Weekly changes in water, food, body weight, diastolic blood pressure (DBP), systolic blood pressure (SBP), and mean arterial pressure (MAP) were monitored. Serum levels of Na, K, Cl, ALB, Ca, and TP were measured at the end of treatment, along with morphological and histomorphometric changes in the small intestine. Stool samples collected before (W0) and 8 weeks after treatment (W8) were sequenced for bacterial 16S rDNA metagenomics. Probiotic LGG significantly reduces average DBP, SBP, and MAP while improving gut integrity through intact intestine morphology, higher villus heights, and a V/C ratio. At the genus level, the LGG group's gut microbiota composition is more similar to the HSD profile at W0 but shifts to the ND profile after treatment at W8. Thus, probiotic LGG lowers blood pressure indices, improves serum biochemistry profile, restores small intestinal integrity barrier, and modulates gut microbiota profile, indicating its potential as an adjuvant treatment for prehypertension and the significance of gut health in blood pressure regulation.
Additional Links: PMID-40254701
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40254701,
year = {2025},
author = {Zaharuddin, AM and Muslim, A and Aazmi, S and Idorus, MY and Almabhouh, FA and Lim, SY and Loganathan, AL and Ayub, Q and Chong, CW and Khalil, KA and Ghani, NA and Lim, SM and Ramasamy, K},
title = {Probiotic Lactobacillus rhamnosus GG Alleviates Prehypertension and Restores Gut Health and Microbiota in NaCl-Induced Prehypertensive Rats.},
journal = {Probiotics and antimicrobial proteins},
volume = {},
number = {},
pages = {},
pmid = {40254701},
issn = {1867-1314},
abstract = {Probiotics could be used as adjuvant treatments in prehypertension management to restore gut microbiota dysbiosis caused by a high-salt diet. This study investigated the antihypertensive effects of the probiotic Lactobacillus rhamnosus strain GG (LGG) on high-salt diet-induced prehypertensive rats. Eighteen Sprague-Dawley rats were assigned equally into three groups: normotensive fed on a normal diet (ND), prehypertensive induced on a 4% NaCl high-salt diet (HSD), and prehypertensive induced on an HSD treated with LGG at 1 × 10[9] CFU daily for 8 weeks (LGG). Weekly changes in water, food, body weight, diastolic blood pressure (DBP), systolic blood pressure (SBP), and mean arterial pressure (MAP) were monitored. Serum levels of Na, K, Cl, ALB, Ca, and TP were measured at the end of treatment, along with morphological and histomorphometric changes in the small intestine. Stool samples collected before (W0) and 8 weeks after treatment (W8) were sequenced for bacterial 16S rDNA metagenomics. Probiotic LGG significantly reduces average DBP, SBP, and MAP while improving gut integrity through intact intestine morphology, higher villus heights, and a V/C ratio. At the genus level, the LGG group's gut microbiota composition is more similar to the HSD profile at W0 but shifts to the ND profile after treatment at W8. Thus, probiotic LGG lowers blood pressure indices, improves serum biochemistry profile, restores small intestinal integrity barrier, and modulates gut microbiota profile, indicating its potential as an adjuvant treatment for prehypertension and the significance of gut health in blood pressure regulation.},
}
RevDate: 2025-04-21
CmpDate: 2025-04-21
Inheritance or Recruitment? The Assembly Mechanisms and Functional Dynamics of Microbial Communities in the Life Cycle of a Wood-Feeding Beetle.
Molecular ecology, 34(9):e17751.
Microbial partners enhance the metabolic capabilities of insects, enabling their adaptation to diverse ecological niches. Xylophagous insects have larvae that can digest lignocellulose and cope with plant secondary metabolites (PSMs). However, there is little information in terms of microbiome sources, dynamics and species contributions. This limits our understanding of the interaction between xylophagous insects and the microbiome. Monochamus saltuarius (Cerambycidae) is a significant borer of conifers. We used combined qPCR, host genomic and microbiome metagenomic datasets, as well as in vitro validation experiments to study the dynamics of the associated microbiome and its interactions with M. saltuarius. We evaluated microbial metabolic/biosynthetic contributions and validated their related functions. Our findings revealed that insect growth and development altered the quantity and community composition of associated bacteria and fungi. The egg microbiome was particularly susceptible to alteration due to oviposition pits. Bacterial transmission largely persisted between developmental stages, while fungal re-acquisition primarily originated from the external environment. By reconstructing community pathway maps, we identified the cooperative interactions between the insect and its gut microbiome. As larvae transitioned from phloem to xylem feeding, the functional role of the gut microbiome in various pathways was weakened. Remarkably, high-contribution bacterial species largely overlapped across different functional roles, and these species also showed considerable overlap between phloem and xylem feeding periods. Overall, our study highlights the unique interaction between xylophagous insects and their microbiome, which enhances their ability in lignocellulose digestion, PSMs degradation and the acquisition of essential amino acids, as well as vitamins.
Additional Links: PMID-40211688
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40211688,
year = {2025},
author = {Ge, SX and Niu, YM and Ren, LL and Zong, SX},
title = {Inheritance or Recruitment? The Assembly Mechanisms and Functional Dynamics of Microbial Communities in the Life Cycle of a Wood-Feeding Beetle.},
journal = {Molecular ecology},
volume = {34},
number = {9},
pages = {e17751},
doi = {10.1111/mec.17751},
pmid = {40211688},
issn = {1365-294X},
support = {2021YFD1400900//National Key R&D Program of China/ ; },
mesh = {Animals ; *Coleoptera/microbiology/genetics/growth & development ; *Microbiota/genetics ; Larva/microbiology ; Bacteria/genetics/classification ; Gastrointestinal Microbiome/genetics ; Wood ; Life Cycle Stages ; Fungi/genetics/classification ; },
abstract = {Microbial partners enhance the metabolic capabilities of insects, enabling their adaptation to diverse ecological niches. Xylophagous insects have larvae that can digest lignocellulose and cope with plant secondary metabolites (PSMs). However, there is little information in terms of microbiome sources, dynamics and species contributions. This limits our understanding of the interaction between xylophagous insects and the microbiome. Monochamus saltuarius (Cerambycidae) is a significant borer of conifers. We used combined qPCR, host genomic and microbiome metagenomic datasets, as well as in vitro validation experiments to study the dynamics of the associated microbiome and its interactions with M. saltuarius. We evaluated microbial metabolic/biosynthetic contributions and validated their related functions. Our findings revealed that insect growth and development altered the quantity and community composition of associated bacteria and fungi. The egg microbiome was particularly susceptible to alteration due to oviposition pits. Bacterial transmission largely persisted between developmental stages, while fungal re-acquisition primarily originated from the external environment. By reconstructing community pathway maps, we identified the cooperative interactions between the insect and its gut microbiome. As larvae transitioned from phloem to xylem feeding, the functional role of the gut microbiome in various pathways was weakened. Remarkably, high-contribution bacterial species largely overlapped across different functional roles, and these species also showed considerable overlap between phloem and xylem feeding periods. Overall, our study highlights the unique interaction between xylophagous insects and their microbiome, which enhances their ability in lignocellulose digestion, PSMs degradation and the acquisition of essential amino acids, as well as vitamins.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Coleoptera/microbiology/genetics/growth & development
*Microbiota/genetics
Larva/microbiology
Bacteria/genetics/classification
Gastrointestinal Microbiome/genetics
Wood
Life Cycle Stages
Fungi/genetics/classification
RevDate: 2025-04-21
CmpDate: 2025-04-21
Multimodal metagenomic analysis reveals microbial InDels as superior biomarkers for pediatric Crohn's disease.
Journal of Crohn's & colitis, 19(4):.
BACKGROUND AND AIMS: The gut microbiome is closely associated with pediatric Crohn's disease (CD), while the multidimensional microbial signature and their capabilities for distinguishing pediatric CD are underexplored. This study aims to characterize the microbial alterations in pediatric CD and develop a robust classification model.
METHODS: A total of 1175 fecal metagenomic sequencing samples, predominantly from 3 cohorts of pediatric CD patients, were re-analyzed from raw sequencing data using uniform process pipelines to obtain multidimensional microbial alterations in pediatric CD, including taxonomic profiles, functional profiles, and multi-type genetic variants. Random forest algorithms were used to construct classification models after comparing multiple machine learning algorithms.
RESULTS: We found pediatric CD samples exhibited reduced microbial diversity and unique microbial characteristics. Pronounced abundance differences in 45 species and 1357 KEGG orthology genes. Particularly, Enterocloster bolteae emerged as a pivotal pediatric CD-associated species. Additionally, we identified a vast amount of microbial genetic variants linked to pediatric CD, including 192 structural variants, 1256 insertions/deletions (InDels), and 3567 single nucleotide variants, with a considerable portion of these variants located in non-genic regions. The InDel-based model outperformed other predictive models against multidimensional microbial signatures, achieving an area under the ROC curve (AUC) of 0.982. The robustness and disease specificity were further confirmed in an independent CD cohort (AUC = 0.996) and 5 other microbiome-associated pediatric cohorts.
CONCLUSIONS: Our study provided a comprehensive landscape of microbial alterations in pediatric CD and introduced a highly effective diagnostic model rooted in microbial InDels, which contributes to the development of noninvasive diagnostic tools and targeted therapies.
Additional Links: PMID-40052570
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40052570,
year = {2025},
author = {Shen, M and Gao, S and Zhu, R and Wang, W and Gao, W and Tao, L and Chen, W and Zhu, X and Yang, Y and Xu, T and Zhao, T and Jiao, N and Zhi, M and Zhu, L},
title = {Multimodal metagenomic analysis reveals microbial InDels as superior biomarkers for pediatric Crohn's disease.},
journal = {Journal of Crohn's & colitis},
volume = {19},
number = {4},
pages = {},
doi = {10.1093/ecco-jcc/jjaf039},
pmid = {40052570},
issn = {1876-4479},
support = {82170542//National Natural Science Foundation of China/ ; 2021YFF0703700/2021YFF0703702//National Key Research and Development Program of China/ ; 2014008//Sun Yat-sen University Clinical Research 5010 Program/ ; 2019ZT08Y464//Guangdong Province "Pearl River Talent Plan" Innovation and Entrepreneurship Team Project/ ; },
mesh = {Humans ; *Crohn Disease/microbiology/diagnosis/genetics ; *Gastrointestinal Microbiome/genetics ; Child ; *Metagenomics/methods ; *INDEL Mutation ; Feces/microbiology ; Female ; Male ; Biomarkers/analysis ; Adolescent ; Machine Learning ; },
abstract = {BACKGROUND AND AIMS: The gut microbiome is closely associated with pediatric Crohn's disease (CD), while the multidimensional microbial signature and their capabilities for distinguishing pediatric CD are underexplored. This study aims to characterize the microbial alterations in pediatric CD and develop a robust classification model.
METHODS: A total of 1175 fecal metagenomic sequencing samples, predominantly from 3 cohorts of pediatric CD patients, were re-analyzed from raw sequencing data using uniform process pipelines to obtain multidimensional microbial alterations in pediatric CD, including taxonomic profiles, functional profiles, and multi-type genetic variants. Random forest algorithms were used to construct classification models after comparing multiple machine learning algorithms.
RESULTS: We found pediatric CD samples exhibited reduced microbial diversity and unique microbial characteristics. Pronounced abundance differences in 45 species and 1357 KEGG orthology genes. Particularly, Enterocloster bolteae emerged as a pivotal pediatric CD-associated species. Additionally, we identified a vast amount of microbial genetic variants linked to pediatric CD, including 192 structural variants, 1256 insertions/deletions (InDels), and 3567 single nucleotide variants, with a considerable portion of these variants located in non-genic regions. The InDel-based model outperformed other predictive models against multidimensional microbial signatures, achieving an area under the ROC curve (AUC) of 0.982. The robustness and disease specificity were further confirmed in an independent CD cohort (AUC = 0.996) and 5 other microbiome-associated pediatric cohorts.
CONCLUSIONS: Our study provided a comprehensive landscape of microbial alterations in pediatric CD and introduced a highly effective diagnostic model rooted in microbial InDels, which contributes to the development of noninvasive diagnostic tools and targeted therapies.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Crohn Disease/microbiology/diagnosis/genetics
*Gastrointestinal Microbiome/genetics
Child
*Metagenomics/methods
*INDEL Mutation
Feces/microbiology
Female
Male
Biomarkers/analysis
Adolescent
Machine Learning
RevDate: 2025-04-19
CmpDate: 2025-04-19
Examining the impact of crops and foods biofortified with micronutrients on the gut microbiome.
Food research international (Ottawa, Ont.), 209:116189.
Micronutrient deficiencies (MNDs) impact more than three billion individuals worldwide, particularly those in impoverished and marginalized communities, leading to adverse long-term health consequences. Biofortification, which focusses on enhancing the nutrient density of food crops, presents a promising strategy to address this challenge. Recent studies involving both model organisms and human subjects have demonstrated that, beyond remedying common dietary insufficiencies, micronutrients can modulate the composition and functionality of the gut microbiome. The microbiota, in turn, utilize these micronutrients, facilitating digestion, synthesizing essential nutrients, and modulating immune responses, thereby establishing a bidirectional relationship known as the micronutrient-microbiome axis. Numerous studies have also documented significant variations in these interactions, highlighting the complex dynamics of the micronutrient-microbiome relationship. The composition and interactions of the microbiota have been investigated using various methodologies, including 16S rRNA gene sequencing, RT-PCR, metagenomics, and metabolomics. This review explores recent advancements in understanding the reciprocal relationship between micronutrient levels and the gut microbiome, emphasizing key findings that provide critical insights for the development of targeted dietary strategies aimed at alleviating MNDs and improving overall health.
Additional Links: PMID-40253169
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40253169,
year = {2025},
author = {Aryal, A and Nwachukwu, ID and Aryee, ANA},
title = {Examining the impact of crops and foods biofortified with micronutrients on the gut microbiome.},
journal = {Food research international (Ottawa, Ont.)},
volume = {209},
number = {},
pages = {116189},
doi = {10.1016/j.foodres.2025.116189},
pmid = {40253169},
issn = {1873-7145},
mesh = {*Gastrointestinal Microbiome/physiology ; *Micronutrients ; Humans ; *Crops, Agricultural ; *Biofortification ; *Food, Fortified ; Animals ; },
abstract = {Micronutrient deficiencies (MNDs) impact more than three billion individuals worldwide, particularly those in impoverished and marginalized communities, leading to adverse long-term health consequences. Biofortification, which focusses on enhancing the nutrient density of food crops, presents a promising strategy to address this challenge. Recent studies involving both model organisms and human subjects have demonstrated that, beyond remedying common dietary insufficiencies, micronutrients can modulate the composition and functionality of the gut microbiome. The microbiota, in turn, utilize these micronutrients, facilitating digestion, synthesizing essential nutrients, and modulating immune responses, thereby establishing a bidirectional relationship known as the micronutrient-microbiome axis. Numerous studies have also documented significant variations in these interactions, highlighting the complex dynamics of the micronutrient-microbiome relationship. The composition and interactions of the microbiota have been investigated using various methodologies, including 16S rRNA gene sequencing, RT-PCR, metagenomics, and metabolomics. This review explores recent advancements in understanding the reciprocal relationship between micronutrient levels and the gut microbiome, emphasizing key findings that provide critical insights for the development of targeted dietary strategies aimed at alleviating MNDs and improving overall health.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Gastrointestinal Microbiome/physiology
*Micronutrients
Humans
*Crops, Agricultural
*Biofortification
*Food, Fortified
Animals
RevDate: 2025-04-19
Impact of Watershed-Scale Land Restoration on Soil Microbial Communities and Their Functions: Insights from Metagenomic Analysis.
Environmental research pii:S0013-9351(25)00860-6 [Epub ahead of print].
Land restoration in the gully regions of China's Loess Plateau has significantly altered soil conditions and farming practices, yet its impact on soil microbes remains unclear. This study applied metagenomic sequencing and correlation analysis to examine microbial community shifts and key genes involved in carbon, nitrogen, and phosphorus cycling. Results show increased biodiversity and microbial activity, especially downstream, enhancing carbon metabolism and ecosystem resilience. Phosphorus activation improved, with related gene abundance rising by 27.45%-52.57%, facilitating phosphorus availability. Nitrogen cycling showed enhanced nitrification and nitrogen fixation, with reduced denitrification, promoting nitrogen retention. Soil organic carbon, total nitrogen, ammonium nitrogen, and available phosphorus (AP), particularly AP, strongly influenced microbial dynamics. These findings highlight the positive role of land restoration in improving soil health and nutrient cycling, supporting sustainable agriculture.
Additional Links: PMID-40252793
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40252793,
year = {2025},
author = {Yang, R and Guo, S and Huo, L and Yang, G and Tian, S},
title = {Impact of Watershed-Scale Land Restoration on Soil Microbial Communities and Their Functions: Insights from Metagenomic Analysis.},
journal = {Environmental research},
volume = {},
number = {},
pages = {121609},
doi = {10.1016/j.envres.2025.121609},
pmid = {40252793},
issn = {1096-0953},
abstract = {Land restoration in the gully regions of China's Loess Plateau has significantly altered soil conditions and farming practices, yet its impact on soil microbes remains unclear. This study applied metagenomic sequencing and correlation analysis to examine microbial community shifts and key genes involved in carbon, nitrogen, and phosphorus cycling. Results show increased biodiversity and microbial activity, especially downstream, enhancing carbon metabolism and ecosystem resilience. Phosphorus activation improved, with related gene abundance rising by 27.45%-52.57%, facilitating phosphorus availability. Nitrogen cycling showed enhanced nitrification and nitrogen fixation, with reduced denitrification, promoting nitrogen retention. Soil organic carbon, total nitrogen, ammonium nitrogen, and available phosphorus (AP), particularly AP, strongly influenced microbial dynamics. These findings highlight the positive role of land restoration in improving soil health and nutrient cycling, supporting sustainable agriculture.},
}
RevDate: 2025-04-19
Exposure to pesticides is correlated with gut microbiota alterations in a farmland raptor.
Environment international, 199:109436 pii:S0160-4120(25)00187-4 [Epub ahead of print].
The gut microbiota is crucial for host health and can be impacted by various environmental disruptions, yet the effects of multiple pesticide exposures on farmland organisms' microbiomes remain largely unexplored. We assessed microbiota changes in a wild apex predator exposed to multiple pesticides in agricultural landscapes. Pesticides, including acetochlor and quinoxyfen, which are supposed to be banned, were significantly positively correlated with certain key bacteria from Actinobacteria, Alphaproteobacteria and Gammaproteobacteria classes. Our results light up the potential collateral effect of pesticides on gut bacterial assemblages through unknown mechanisms. These effects could result in dysbiosis and the promotion of potential pathogens and/or the selection of bacteria that might allow the organism to detoxify the organism. Although formal metagenomic analyses would be required soon, these microbial shifts underline the broader ecological consequences of pesticide exposure, emphasising the need for integrated biodiversity conservation and ecosystem management to protect environmental and public health.
Additional Links: PMID-40252553
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40252553,
year = {2025},
author = {Bariod, L and Fuentes, E and Millet, M and White, J and Jacquiod, S and Moreau, J and Monceau, K},
title = {Exposure to pesticides is correlated with gut microbiota alterations in a farmland raptor.},
journal = {Environment international},
volume = {199},
number = {},
pages = {109436},
doi = {10.1016/j.envint.2025.109436},
pmid = {40252553},
issn = {1873-6750},
abstract = {The gut microbiota is crucial for host health and can be impacted by various environmental disruptions, yet the effects of multiple pesticide exposures on farmland organisms' microbiomes remain largely unexplored. We assessed microbiota changes in a wild apex predator exposed to multiple pesticides in agricultural landscapes. Pesticides, including acetochlor and quinoxyfen, which are supposed to be banned, were significantly positively correlated with certain key bacteria from Actinobacteria, Alphaproteobacteria and Gammaproteobacteria classes. Our results light up the potential collateral effect of pesticides on gut bacterial assemblages through unknown mechanisms. These effects could result in dysbiosis and the promotion of potential pathogens and/or the selection of bacteria that might allow the organism to detoxify the organism. Although formal metagenomic analyses would be required soon, these microbial shifts underline the broader ecological consequences of pesticide exposure, emphasising the need for integrated biodiversity conservation and ecosystem management to protect environmental and public health.},
}
RevDate: 2025-04-18
CmpDate: 2025-04-18
Analysis of Blood Microbiome From People Living With HIV and Donors by 16S rRNA Metagenomic Sequencing.
Journal of medical virology, 97(4):e70341.
Utilize 16S rRNA sequencing technology to characterize bacterial species susceptible to people living with HIV (PLWH) across different stages. This mapping aims to establish a foundational framework for preventing secondary HIV infections, prolonging patient survival, enhancing quality of life, and advancing the diagnosis, treatment, and research of bacterial co-infections. In this study, we classified the participants into three groups: The blood of donors living with HIV (DI group), AIDS patients who have received ART treatment (PI group), and healthy blood donors as the control group (DH group). Each group was divided into three parallel subgroups, with 30 samples pooled from each parallel group for plasma extraction. As initial processing steps, the nine parallel subgroups were subjected to nucleic acid extraction and PCR amplification targeting the 16SV34 region. The resulting amplified products were subsequently forwarded to a sequencing company. It can be seen from the Venn diagram that the DI groups showed significantly higher bacterial diversity than the PI group and the DH group. The PI group had lower bacterial relative abundance and diversity compared to the DI group, with a community structure more similar to the control group. The DI group is particularly susceptible to several significant pathogens, including Ralstonia, Pseudomonas, Acinetobacter, Methyloversatilis, and Vibrio. The study revealed a greater quantity and diversity of bacteria in the DI blood compared to the PI and DH groups. This observation may be attributed to PI group patients in this study being hospitalized and receiving treatment.
Additional Links: PMID-40249033
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40249033,
year = {2025},
author = {Wei, Q and Chen, L and Yin, Y and Pai, M and Duan, H and Zeng, W and Hu, X and Xu, M and Li, S},
title = {Analysis of Blood Microbiome From People Living With HIV and Donors by 16S rRNA Metagenomic Sequencing.},
journal = {Journal of medical virology},
volume = {97},
number = {4},
pages = {e70341},
doi = {10.1002/jmv.70341},
pmid = {40249033},
issn = {1096-9071},
support = {//This work was supported by the Chinese Society of Blood Transfusion Weigao Research Fund Project (CSBT-MWG-2020-02) and the Chinese Academy of Medical Sciences Medical and Health Science and Technology Innovation Project (CAMS-2021-I2M-1-060)./ ; },
mesh = {Humans ; *RNA, Ribosomal, 16S/genetics ; *HIV Infections/microbiology/blood/drug therapy ; *Microbiota ; Metagenomics ; *Blood Donors ; *Bacteria/genetics/classification/isolation & purification ; Male ; Adult ; Female ; Middle Aged ; Sequence Analysis, DNA ; *Blood/microbiology ; DNA, Bacterial/genetics/chemistry ; DNA, Ribosomal/genetics/chemistry ; },
abstract = {Utilize 16S rRNA sequencing technology to characterize bacterial species susceptible to people living with HIV (PLWH) across different stages. This mapping aims to establish a foundational framework for preventing secondary HIV infections, prolonging patient survival, enhancing quality of life, and advancing the diagnosis, treatment, and research of bacterial co-infections. In this study, we classified the participants into three groups: The blood of donors living with HIV (DI group), AIDS patients who have received ART treatment (PI group), and healthy blood donors as the control group (DH group). Each group was divided into three parallel subgroups, with 30 samples pooled from each parallel group for plasma extraction. As initial processing steps, the nine parallel subgroups were subjected to nucleic acid extraction and PCR amplification targeting the 16SV34 region. The resulting amplified products were subsequently forwarded to a sequencing company. It can be seen from the Venn diagram that the DI groups showed significantly higher bacterial diversity than the PI group and the DH group. The PI group had lower bacterial relative abundance and diversity compared to the DI group, with a community structure more similar to the control group. The DI group is particularly susceptible to several significant pathogens, including Ralstonia, Pseudomonas, Acinetobacter, Methyloversatilis, and Vibrio. The study revealed a greater quantity and diversity of bacteria in the DI blood compared to the PI and DH groups. This observation may be attributed to PI group patients in this study being hospitalized and receiving treatment.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*RNA, Ribosomal, 16S/genetics
*HIV Infections/microbiology/blood/drug therapy
*Microbiota
Metagenomics
*Blood Donors
*Bacteria/genetics/classification/isolation & purification
Male
Adult
Female
Middle Aged
Sequence Analysis, DNA
*Blood/microbiology
DNA, Bacterial/genetics/chemistry
DNA, Ribosomal/genetics/chemistry
RevDate: 2025-04-19
CmpDate: 2025-04-19
A 7-year feed study on the long-term effects of genetically modified maize containing cry1Ab/cry2Aj and EPSPS genes on gut microbiota and metabolite profiles across two generations of cynomolgus macaques.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 200:115419.
The health implications of genetically modified (GM) crops remain controversial relative to their non-GM counterparts, particularly regarding long-term dietary exposure. Although the gut microbiome is a key health indicator, studies investigating the impact of GM crop consumption on intestinal microbiota remain limited. This study presents a comprehensive 7-year evaluation of GM maize expressing cry1Ab/cry2Aj and G10evo-EPSPS proteins through metagenomic and metabolomic analyses. We assessed the effects of GM maize consumption on gut microbiota diversity and metabolite profiles in cynomolgus macaques (Macaca fascicularis) compared with non-GM maize. Three diet regimens were implemented: a conventional compound feed (CK group), diet formulation containing 70 % non-GM maize (Corn group), and diet formulation containing 70 % GM maize (Tg group). The results demonstrated that feeding GM maize to the first (F0) and second (F1) generations of monkeys did not substantially affect the composition, community structure, or function of the intestinal microbiome, as indicated by species composition and diversity analyses. Minor differences in intestinal metabolites were observed but were not directly linked to transgenic maize consumption. Collectively, long-term intake of maize with cry1Ab/cry2Aj and g10evo-epsps genes had no adverse effects on macaques or their offspring.
Additional Links: PMID-40157594
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40157594,
year = {2025},
author = {Wang, C and Fan, S and Li, M and Ye, Y and Li, Z and Long, W and Li, Y and Huang, Z and Jiang, Q and Yang, W and Yang, R and Tang, D},
title = {A 7-year feed study on the long-term effects of genetically modified maize containing cry1Ab/cry2Aj and EPSPS genes on gut microbiota and metabolite profiles across two generations of cynomolgus macaques.},
journal = {Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association},
volume = {200},
number = {},
pages = {115419},
doi = {10.1016/j.fct.2025.115419},
pmid = {40157594},
issn = {1873-6351},
mesh = {Animals ; *Zea mays/genetics/metabolism ; *Plants, Genetically Modified/genetics/metabolism ; *Gastrointestinal Microbiome/drug effects ; Macaca fascicularis ; *Endotoxins/genetics/metabolism ; *Hemolysin Proteins/genetics/metabolism ; Bacillus thuringiensis Toxins ; *Animal Feed/analysis ; Male ; *Bacterial Proteins/genetics/metabolism ; Female ; },
abstract = {The health implications of genetically modified (GM) crops remain controversial relative to their non-GM counterparts, particularly regarding long-term dietary exposure. Although the gut microbiome is a key health indicator, studies investigating the impact of GM crop consumption on intestinal microbiota remain limited. This study presents a comprehensive 7-year evaluation of GM maize expressing cry1Ab/cry2Aj and G10evo-EPSPS proteins through metagenomic and metabolomic analyses. We assessed the effects of GM maize consumption on gut microbiota diversity and metabolite profiles in cynomolgus macaques (Macaca fascicularis) compared with non-GM maize. Three diet regimens were implemented: a conventional compound feed (CK group), diet formulation containing 70 % non-GM maize (Corn group), and diet formulation containing 70 % GM maize (Tg group). The results demonstrated that feeding GM maize to the first (F0) and second (F1) generations of monkeys did not substantially affect the composition, community structure, or function of the intestinal microbiome, as indicated by species composition and diversity analyses. Minor differences in intestinal metabolites were observed but were not directly linked to transgenic maize consumption. Collectively, long-term intake of maize with cry1Ab/cry2Aj and g10evo-epsps genes had no adverse effects on macaques or their offspring.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Zea mays/genetics/metabolism
*Plants, Genetically Modified/genetics/metabolism
*Gastrointestinal Microbiome/drug effects
Macaca fascicularis
*Endotoxins/genetics/metabolism
*Hemolysin Proteins/genetics/metabolism
Bacillus thuringiensis Toxins
*Animal Feed/analysis
Male
*Bacterial Proteins/genetics/metabolism
Female
RevDate: 2025-04-19
CmpDate: 2025-04-19
Interaction of environmental fluoride exposure and gut microbes: Potential implication in the development of fluorosis in human subjects.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 200:115388.
Fluoride exposure primarily occurs through contaminated water and leads to fluorosis, which is a global health concern. After ingestion, fluoride is absorbed via gastrointestinal tract, where it interacts with the gut microbiota. While animal studies have explored fluoride's effects on gut microbiota, no human studies have yet been conducted. Most research emphasizes metagenomic diversity, neglecting isolation and characterization of pure cultures for further applications. Additionally, the association between gut microbiota with fluorosis outcomes in fluoride-exposed populations is unexplored. This study characterizes and compares the cultivable gut microbiota in the fluoride-exposed population with (symptomatic, group II) or without (asymptomatic, group I) signs of skeletal fluorosis along with unexposed control (group III). Group I displayed higher abundance of Firmicutes (58.58 %), group II had predominance of Proteobacteria (61.25 %) while group III showed similar abundance of Proteobacteria (50.38 %) and Firmicutes (49.51 %). On analyzing short-chain fatty acid (SCFA) profiles, group I isolates produced higher isobutyric acid (1.31 ± 0.9 mM) than group II (0.71 ± 0.35 mM), while group II produced more isovaleric acid (0.8 ± 0.41 mM) than group I (0.61 ± 0.08 mM) (p < 0.05). These findings suggest that gut microbiota and SCFAs alteration may influence bone metabolism, affecting the fluorosis progression.
Additional Links: PMID-40086585
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40086585,
year = {2025},
author = {Rawat, N and Sivanesan, S and Kanade, GS and Bafana, A},
title = {Interaction of environmental fluoride exposure and gut microbes: Potential implication in the development of fluorosis in human subjects.},
journal = {Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association},
volume = {200},
number = {},
pages = {115388},
doi = {10.1016/j.fct.2025.115388},
pmid = {40086585},
issn = {1873-6351},
mesh = {*Gastrointestinal Microbiome/drug effects ; Humans ; *Fluorides/toxicity ; Male ; Female ; *Fluorosis, Dental/microbiology/etiology ; *Environmental Exposure/adverse effects ; Adult ; Middle Aged ; Bacteria/classification/isolation & purification/genetics/metabolism ; Fatty Acids, Volatile/metabolism ; Feces/microbiology ; },
abstract = {Fluoride exposure primarily occurs through contaminated water and leads to fluorosis, which is a global health concern. After ingestion, fluoride is absorbed via gastrointestinal tract, where it interacts with the gut microbiota. While animal studies have explored fluoride's effects on gut microbiota, no human studies have yet been conducted. Most research emphasizes metagenomic diversity, neglecting isolation and characterization of pure cultures for further applications. Additionally, the association between gut microbiota with fluorosis outcomes in fluoride-exposed populations is unexplored. This study characterizes and compares the cultivable gut microbiota in the fluoride-exposed population with (symptomatic, group II) or without (asymptomatic, group I) signs of skeletal fluorosis along with unexposed control (group III). Group I displayed higher abundance of Firmicutes (58.58 %), group II had predominance of Proteobacteria (61.25 %) while group III showed similar abundance of Proteobacteria (50.38 %) and Firmicutes (49.51 %). On analyzing short-chain fatty acid (SCFA) profiles, group I isolates produced higher isobutyric acid (1.31 ± 0.9 mM) than group II (0.71 ± 0.35 mM), while group II produced more isovaleric acid (0.8 ± 0.41 mM) than group I (0.61 ± 0.08 mM) (p < 0.05). These findings suggest that gut microbiota and SCFAs alteration may influence bone metabolism, affecting the fluorosis progression.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Gastrointestinal Microbiome/drug effects
Humans
*Fluorides/toxicity
Male
Female
*Fluorosis, Dental/microbiology/etiology
*Environmental Exposure/adverse effects
Adult
Middle Aged
Bacteria/classification/isolation & purification/genetics/metabolism
Fatty Acids, Volatile/metabolism
Feces/microbiology
RevDate: 2025-04-18
CmpDate: 2025-04-18
Metagenomic analysis reveals the diversity of the vaginal virome and its association with vaginitis.
Frontiers in cellular and infection microbiology, 15:1582553.
INTRODUCTION: The human vaginal virome is an essential yet understudied component of the vaginal microbiome. Its diversity and potential contributions to health and disease, particularly vaginitis, remain poorly understood.
METHODS: We conducted metagenomic sequencing on 24 pooled vaginal swab libraries collected from 267 women, including both healthy individuals and those diagnosed with vaginitis. Viral community composition, diversity indices (Shannon, Richness, and Pielou), and phylogenetic characteristics were analyzed. Virus-host associations were also investigated.
RESULTS: DNA viruses dominated the vaginal virome. Anelloviridae and Papillomaviridae were the most prevalent eukaryotic viruses, while Siphoviridae and Microviridae were the leading bacteriophages. Compared to healthy controls, the vaginitis group exhibited significantly reduced alpha diversity and greater beta diversity dispersion, indicating altered viral community structure. Anelloviruses, detected in both groups, showed extensive lineage diversity, frequent recombination, and pronounced phylogenetic divergence. HPV diversity and richness were significantly elevated in the vaginitis group, alongside an unbalanced distribution of viral lineages. Novel phage-bacterial associations were also identified, suggesting a potential role for bacteriophages in shaping the vaginal microbiome.
DISCUSSION: These findings provide new insights into the composition and structure of the vaginal virome and its potential association with vaginal dysbiosis. The distinct virome characteristics observed in women with vaginitis highlight the relevance of viral communities in reproductive health. Future studies incorporating individual-level sequencing and metatranscriptomics are warranted to explore intra-host viral dynamics, assess viral activity, and clarify the functional roles of vaginal viruses in host-microbiome interactions.
Additional Links: PMID-40248366
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40248366,
year = {2025},
author = {Lu, X and Lu, Q and Zhu, R and Sun, M and Chen, H and Ge, Z and Jiang, Y and Wang, Z and Zhang, L and Zhang, W and Dai, Z},
title = {Metagenomic analysis reveals the diversity of the vaginal virome and its association with vaginitis.},
journal = {Frontiers in cellular and infection microbiology},
volume = {15},
number = {},
pages = {1582553},
pmid = {40248366},
issn = {2235-2988},
mesh = {Female ; Humans ; *Virome/genetics ; *Vagina/virology/microbiology ; *Metagenomics ; Phylogeny ; *Vaginitis/virology/microbiology ; Adult ; Microbiota ; Bacteriophages/genetics/classification ; *Viruses/classification/genetics/isolation & purification ; Middle Aged ; Biodiversity ; Young Adult ; Bacteria/classification/genetics ; },
abstract = {INTRODUCTION: The human vaginal virome is an essential yet understudied component of the vaginal microbiome. Its diversity and potential contributions to health and disease, particularly vaginitis, remain poorly understood.
METHODS: We conducted metagenomic sequencing on 24 pooled vaginal swab libraries collected from 267 women, including both healthy individuals and those diagnosed with vaginitis. Viral community composition, diversity indices (Shannon, Richness, and Pielou), and phylogenetic characteristics were analyzed. Virus-host associations were also investigated.
RESULTS: DNA viruses dominated the vaginal virome. Anelloviridae and Papillomaviridae were the most prevalent eukaryotic viruses, while Siphoviridae and Microviridae were the leading bacteriophages. Compared to healthy controls, the vaginitis group exhibited significantly reduced alpha diversity and greater beta diversity dispersion, indicating altered viral community structure. Anelloviruses, detected in both groups, showed extensive lineage diversity, frequent recombination, and pronounced phylogenetic divergence. HPV diversity and richness were significantly elevated in the vaginitis group, alongside an unbalanced distribution of viral lineages. Novel phage-bacterial associations were also identified, suggesting a potential role for bacteriophages in shaping the vaginal microbiome.
DISCUSSION: These findings provide new insights into the composition and structure of the vaginal virome and its potential association with vaginal dysbiosis. The distinct virome characteristics observed in women with vaginitis highlight the relevance of viral communities in reproductive health. Future studies incorporating individual-level sequencing and metatranscriptomics are warranted to explore intra-host viral dynamics, assess viral activity, and clarify the functional roles of vaginal viruses in host-microbiome interactions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Female
Humans
*Virome/genetics
*Vagina/virology/microbiology
*Metagenomics
Phylogeny
*Vaginitis/virology/microbiology
Adult
Microbiota
Bacteriophages/genetics/classification
*Viruses/classification/genetics/isolation & purification
Middle Aged
Biodiversity
Young Adult
Bacteria/classification/genetics
RevDate: 2025-04-18
CmpDate: 2025-04-18
Advancing molecular macrobenthos biodiversity monitoring: a comparison between Oxford Nanopore and Illumina based metabarcoding and metagenomics.
PeerJ, 13:e19158.
DNA-based methods and developments of sequencing technologies are integral to macrobenthos biodiversity studies, and their implementation as standardized monitoring methods is approaching. Evaluating the efficacy and reliability of these technological developments is crucial for macrobenthos biodiversity assessments. In this study, we compared three DNA-based techniques for assessing the diversity of bulk macrobenthos samples from the Belgian North Sea. Specifically, we compared amplicon sequencing using Illumina MiSeq and portable real-time sequencing of Oxford Nanopore versus shotgun sequencing using Illumina NovaSeq sequencing. The 313 bp mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding fragment served as the target region for the metabarcoding analysis. Our results indicate that Oxford Nanopore and MiSeq metabarcoding had similar performances in terms of alpha and beta diversity, revealing highly similar location-specific community compositions. The NovaSeq metagenomics method also resulted in similar alpha diversity, but slightly different community compositions compared to the metabarcoding approach. Despite these differences, location-specific community compositions were maintained across all platforms. Notably, read counts from the NovaSeq metagenomic analysis showed the weakest correlation to size corrected morphological abundance and there were mismatches between morphological identification and all DNA based findings which are likely caused by a combination of factors such as primer efficiency and an incomplete reference database. Our findings underscore the critical importance of database completeness prior to implementing DNA-based techniques as standardized monitoring method, especially for metagenomics. Nevertheless, our findings emphasize that Oxford Nanopore metabarcoding proves to be a viable alternative to the conventional Illumina MiSeq metabarcoding platform for macrobenthos biodiversity monitoring.
Additional Links: PMID-40247828
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40247828,
year = {2025},
author = {Doorenspleet, K and Mailli, AA and van der Hoorn, BB and Beentjes, KK and De Backer, A and Derycke, S and Murk, AJ and Reiss, H and Nijland, R},
title = {Advancing molecular macrobenthos biodiversity monitoring: a comparison between Oxford Nanopore and Illumina based metabarcoding and metagenomics.},
journal = {PeerJ},
volume = {13},
number = {},
pages = {e19158},
pmid = {40247828},
issn = {2167-8359},
mesh = {*Biodiversity ; *Metagenomics/methods ; *DNA Barcoding, Taxonomic/methods ; North Sea ; Nanopores ; Belgium ; High-Throughput Nucleotide Sequencing/methods ; },
abstract = {DNA-based methods and developments of sequencing technologies are integral to macrobenthos biodiversity studies, and their implementation as standardized monitoring methods is approaching. Evaluating the efficacy and reliability of these technological developments is crucial for macrobenthos biodiversity assessments. In this study, we compared three DNA-based techniques for assessing the diversity of bulk macrobenthos samples from the Belgian North Sea. Specifically, we compared amplicon sequencing using Illumina MiSeq and portable real-time sequencing of Oxford Nanopore versus shotgun sequencing using Illumina NovaSeq sequencing. The 313 bp mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding fragment served as the target region for the metabarcoding analysis. Our results indicate that Oxford Nanopore and MiSeq metabarcoding had similar performances in terms of alpha and beta diversity, revealing highly similar location-specific community compositions. The NovaSeq metagenomics method also resulted in similar alpha diversity, but slightly different community compositions compared to the metabarcoding approach. Despite these differences, location-specific community compositions were maintained across all platforms. Notably, read counts from the NovaSeq metagenomic analysis showed the weakest correlation to size corrected morphological abundance and there were mismatches between morphological identification and all DNA based findings which are likely caused by a combination of factors such as primer efficiency and an incomplete reference database. Our findings underscore the critical importance of database completeness prior to implementing DNA-based techniques as standardized monitoring method, especially for metagenomics. Nevertheless, our findings emphasize that Oxford Nanopore metabarcoding proves to be a viable alternative to the conventional Illumina MiSeq metabarcoding platform for macrobenthos biodiversity monitoring.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Biodiversity
*Metagenomics/methods
*DNA Barcoding, Taxonomic/methods
North Sea
Nanopores
Belgium
High-Throughput Nucleotide Sequencing/methods
RevDate: 2025-04-18
CmpDate: 2025-04-18
E. coli genetically modified for purine nucleobase release promotes butyrate generation and colonic wound healing during DSS insult.
Gut microbes, 17(1):2490211.
The gut microbiota transforms energy stored as undigestible carbohydrates into a remarkable number of metabolites that fuel intestinal bacterial communities and the host tissue. Colonic epithelial cells at the microbiota-host interface depend upon such microbiota-derived metabolites (MDMs) to satisfy their energy requisite. Microbial dysbiosis eliciting MDM loss contributes to barrier dysfunction and mucosal disease. Recent work has identified a role for microbiota-sourced purines (MSPs), notably hypoxanthine, as an MDM salvaged by the colonic epithelium for nucleotide biogenesis and energy balance. Here, we investigated the role of MSPs in mice during disease-modeled colonic energetic stress using a strain of E. coli genetically modified for enhanced purine nucleobase release (E. coli Mutant). E. coli Mutant colonization protected against DSS-induced tissue damage and permeability while promoting proliferation for wound healing. Metabolite and metagenomic analyses suggested a colonic butyrate-purine nucleobase metabolic axis, wherein the E. coli Mutant provided purine substrate for Clostridia butyrate production and host purine salvage, altogether supplying the host substrate for efficient nucleotide biogenesis and energy balance.
Additional Links: PMID-40247632
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40247632,
year = {2025},
author = {Lee, JS and Kao, DJ and Worledge, CS and Villamaria, ZF and Wang, RX and Welch, NM and Kostelecky, RE and Colgan, SP},
title = {E. coli genetically modified for purine nucleobase release promotes butyrate generation and colonic wound healing during DSS insult.},
journal = {Gut microbes},
volume = {17},
number = {1},
pages = {2490211},
doi = {10.1080/19490976.2025.2490211},
pmid = {40247632},
issn = {1949-0984},
mesh = {Animals ; *Escherichia coli/genetics/metabolism ; *Wound Healing ; Gastrointestinal Microbiome ; Mice ; *Purines/metabolism ; *Colon/microbiology/metabolism/pathology ; *Butyrates/metabolism ; Mice, Inbred C57BL ; Disease Models, Animal ; *Colitis/chemically induced/microbiology ; Intestinal Mucosa/metabolism/microbiology ; Male ; },
abstract = {The gut microbiota transforms energy stored as undigestible carbohydrates into a remarkable number of metabolites that fuel intestinal bacterial communities and the host tissue. Colonic epithelial cells at the microbiota-host interface depend upon such microbiota-derived metabolites (MDMs) to satisfy their energy requisite. Microbial dysbiosis eliciting MDM loss contributes to barrier dysfunction and mucosal disease. Recent work has identified a role for microbiota-sourced purines (MSPs), notably hypoxanthine, as an MDM salvaged by the colonic epithelium for nucleotide biogenesis and energy balance. Here, we investigated the role of MSPs in mice during disease-modeled colonic energetic stress using a strain of E. coli genetically modified for enhanced purine nucleobase release (E. coli Mutant). E. coli Mutant colonization protected against DSS-induced tissue damage and permeability while promoting proliferation for wound healing. Metabolite and metagenomic analyses suggested a colonic butyrate-purine nucleobase metabolic axis, wherein the E. coli Mutant provided purine substrate for Clostridia butyrate production and host purine salvage, altogether supplying the host substrate for efficient nucleotide biogenesis and energy balance.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Escherichia coli/genetics/metabolism
*Wound Healing
Gastrointestinal Microbiome
Mice
*Purines/metabolism
*Colon/microbiology/metabolism/pathology
*Butyrates/metabolism
Mice, Inbred C57BL
Disease Models, Animal
*Colitis/chemically induced/microbiology
Intestinal Mucosa/metabolism/microbiology
Male
RevDate: 2025-04-17
CmpDate: 2025-04-17
Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand.
Current microbiology, 82(6):248.
Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system.
Additional Links: PMID-40244481
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40244481,
year = {2025},
author = {Klangnurak, W and Hinthong, W and Aue-Umneoy, D and Yomla, R},
title = {Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand.},
journal = {Current microbiology},
volume = {82},
number = {6},
pages = {248},
pmid = {40244481},
issn = {1432-0991},
support = {grant number FRB650039/0240 project number 165430//Chulabhorn Royal Academy (Fundamental Fund: fiscal year 2022 by National Science Research and Innovation Fund (NSRF))/ ; contract number FF-65/008//Chulabhorn Royal Academy (Fundamental Fund: fiscal year 2022 by National Science Research and Innovation Fund (NSRF))/ ; },
mesh = {Thailand ; *Bacteria/classification/genetics/isolation & purification ; *Water Microbiology ; *Rivers/microbiology ; Metagenomics ; *Microbiota ; Water Quality ; Environmental Monitoring ; },
abstract = {Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Thailand
*Bacteria/classification/genetics/isolation & purification
*Water Microbiology
*Rivers/microbiology
Metagenomics
*Microbiota
Water Quality
Environmental Monitoring
RevDate: 2025-04-18
CmpDate: 2025-04-18
CoverM: read alignment statistics for metagenomics.
Bioinformatics (Oxford, England), 41(4):.
SUMMARY: Genome-centric analysis of metagenomic samples is a powerful method for understanding the function of microbial communities. Calculating read coverage is a central part of analysis, enabling differential coverage binning for recovery of genomes and estimation of microbial community composition. Coverage is determined by processing read alignments to reference sequences of either contigs or genomes. Per-reference coverage is typically calculated in an ad-hoc manner, with each software package providing its own implementation and specific definition of coverage. Here we present a unified software package CoverM which calculates several coverage statistics for contigs and genomes in an ergonomic and flexible manner. It uses "Mosdepth arrays" for computational efficiency and avoids unnecessary I/O overhead by calculating coverage statistics from streamed read alignment results.
CoverM is free software available at https://github.com/wwood/coverm. CoverM is implemented in Rust, with Python (https://github.com/apcamargo/pycoverm) and Julia (https://github.com/JuliaBinaryWrappers/CoverM_jll.jl) interfaces.
Additional Links: PMID-40193404
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40193404,
year = {2025},
author = {Aroney, STN and Newell, RJP and Nissen, JN and Camargo, AP and Tyson, GW and Woodcroft, BJ},
title = {CoverM: read alignment statistics for metagenomics.},
journal = {Bioinformatics (Oxford, England)},
volume = {41},
number = {4},
pages = {},
pmid = {40193404},
issn = {1367-4811},
support = {2022070//EMERGE National Science Foundation/ ; DE-SC0004632//Genomic Science Program of the United States Department of Energy/ ; },
mesh = {*Metabolomics/methods ; *Biostatistics/methods ; *Microbiota ; *Software Design ; Genome ; },
abstract = {SUMMARY: Genome-centric analysis of metagenomic samples is a powerful method for understanding the function of microbial communities. Calculating read coverage is a central part of analysis, enabling differential coverage binning for recovery of genomes and estimation of microbial community composition. Coverage is determined by processing read alignments to reference sequences of either contigs or genomes. Per-reference coverage is typically calculated in an ad-hoc manner, with each software package providing its own implementation and specific definition of coverage. Here we present a unified software package CoverM which calculates several coverage statistics for contigs and genomes in an ergonomic and flexible manner. It uses "Mosdepth arrays" for computational efficiency and avoids unnecessary I/O overhead by calculating coverage statistics from streamed read alignment results.
CoverM is free software available at https://github.com/wwood/coverm. CoverM is implemented in Rust, with Python (https://github.com/apcamargo/pycoverm) and Julia (https://github.com/JuliaBinaryWrappers/CoverM_jll.jl) interfaces.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Metabolomics/methods
*Biostatistics/methods
*Microbiota
*Software Design
Genome
RevDate: 2025-04-18
CmpDate: 2025-04-18
Lead promoted bile acid deconjugation by modulating gut bacteria encoding bile salt hydrolase (BSH) in Rana chensinensis tadpoles.
Environmental pollution (Barking, Essex : 1987), 373:126187.
Bile salt hydrolase (BSH) is produced by gut bacteria and is responsible for deconjugating amino acids from the aliphatic side chains of conjugated bile acids (BAs), initiating the critical first step in BAs metabolism. Lead (Pb) is known to cause gut microbial dysbiosis, but whether it affects BAs profiles by reshaping the gut microbiota remains elusive. Here, using targeted BAs metabolomics and metagenomics sequencing, we found that 200 μg/L Pb treatment led to a significant increase in the abundance of BSH-producing microbiota (e.g., Eubacterium and Yersinia), thus promoting the deconjugation of taurocholic acid (TCA) and taurochenodeoxycholic acid (TCDCA). Consequently, the accumulation of relatively hydrophobic BAs cholic acid (CA) and chenodeoxycholic acid (CDCA) may cause damage to enterocytes (e.g., reduced microvilli and enterocyte heights), which attenuated tadpole digestion and ultimately led to significant reductions in morphological parameters. The inhibition of tadpole growth by Pb toxicity may negatively affect their survival and even increase their risk of death. Overall, these results revealed for the first time the toxicological mechanism by which Pb reshapes the gut microbiota and thus disrupts the BAs profile, shedding new insights into the detrimental effects of Pb toxicity on amphibian growth.
Additional Links: PMID-40185186
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40185186,
year = {2025},
author = {Liu, Y and Pei, Y and Wang, H and Yang, Z},
title = {Lead promoted bile acid deconjugation by modulating gut bacteria encoding bile salt hydrolase (BSH) in Rana chensinensis tadpoles.},
journal = {Environmental pollution (Barking, Essex : 1987)},
volume = {373},
number = {},
pages = {126187},
doi = {10.1016/j.envpol.2025.126187},
pmid = {40185186},
issn = {1873-6424},
mesh = {Animals ; *Gastrointestinal Microbiome/drug effects ; *Bile Acids and Salts/metabolism ; Larva/drug effects/metabolism ; *Amidohydrolases/metabolism ; *Lead/toxicity ; *Ranidae ; Bacteria ; },
abstract = {Bile salt hydrolase (BSH) is produced by gut bacteria and is responsible for deconjugating amino acids from the aliphatic side chains of conjugated bile acids (BAs), initiating the critical first step in BAs metabolism. Lead (Pb) is known to cause gut microbial dysbiosis, but whether it affects BAs profiles by reshaping the gut microbiota remains elusive. Here, using targeted BAs metabolomics and metagenomics sequencing, we found that 200 μg/L Pb treatment led to a significant increase in the abundance of BSH-producing microbiota (e.g., Eubacterium and Yersinia), thus promoting the deconjugation of taurocholic acid (TCA) and taurochenodeoxycholic acid (TCDCA). Consequently, the accumulation of relatively hydrophobic BAs cholic acid (CA) and chenodeoxycholic acid (CDCA) may cause damage to enterocytes (e.g., reduced microvilli and enterocyte heights), which attenuated tadpole digestion and ultimately led to significant reductions in morphological parameters. The inhibition of tadpole growth by Pb toxicity may negatively affect their survival and even increase their risk of death. Overall, these results revealed for the first time the toxicological mechanism by which Pb reshapes the gut microbiota and thus disrupts the BAs profile, shedding new insights into the detrimental effects of Pb toxicity on amphibian growth.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/drug effects
*Bile Acids and Salts/metabolism
Larva/drug effects/metabolism
*Amidohydrolases/metabolism
*Lead/toxicity
*Ranidae
Bacteria
RevDate: 2025-04-18
CmpDate: 2025-04-18
Lactic acid bacteria target NF-κB signaling to alleviate gastric inflammation.
Food & function, 16(8):3101-3119.
Helicobacter pylori (H. pylori) infection and the resulting gastric inflammation are major contributors to gastric cancer development. Probiotics, particularly Lactobacillus, are promising for their anti-inflammatory potential, yet their exact mechanisms in inhibiting H. pylori-induced inflammation are unclear. In our previous study, Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) demonstrated strong anti-inflammatory effects against H. pylori infection in vivo, but its precise mechanisms were not fully understood. Here, we aimed to investigate how L. plantarum ZJ316 inhibits the inflammatory response to H. pylori infection. Our results demonstrated that L. plantarum ZJ316 effectively reduced the expression of pro-inflammatory cytokines in H. pylori-infected AGS cells. Mechanistically, L. plantarum ZJ316 inhibited the NF-κB signaling pathway by preventing the degradation of IκBα, suppressing p65 phosphorylation, and blocking the nuclear translocation of phosphorylated p65. Treatment with the NF-κB inhibitor BAY 11-7082 further decreased tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-1β (IL-1β) levels, confirming the inhibitory effect of L. plantarum ZJ316 on the NF-κB pathway. In H. pylori-infected mice, oral administration of L. plantarum ZJ316 significantly alleviated inflammatory cell infiltration, reduced TNF-α and pepsinogen II (PGII) levels, and increased interleukin-10 (IL-10) levels in serum. A comparative metagenomic analysis of the gastric microbiota revealed a decrease in Prevotella and Desulfovibrio, alongside an increase in Ligilactobacillus and Akkermansia, supporting the protective effects of L. plantarum ZJ316 and correlating with their decreased inflammatory response. In summary, administration of L. plantarum ZJ316 demonstrated robust anti-inflammatory effects against H. pylori infection by suppressing NF-κB signaling and promoting favorable changes in the gastric microbiota composition. Therefore, L. plantarum ZJ316 holds promise as a novel functional food for protecting the body against H. pylori infection.
Additional Links: PMID-40152095
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40152095,
year = {2025},
author = {Wu, S and Luo, Y and Wei, F and Li, Y and Fan, J and Chen, Y and Zhang, W and Li, X and Xu, Y and Chen, Z and Xia, C and Hu, M and Li, P and Gu, Q},
title = {Lactic acid bacteria target NF-κB signaling to alleviate gastric inflammation.},
journal = {Food & function},
volume = {16},
number = {8},
pages = {3101-3119},
doi = {10.1039/d4fo06308b},
pmid = {40152095},
issn = {2042-650X},
mesh = {Cell Line, Tumor ; Humans ; *Signal Transduction ; Lactic Acid/metabolism ; NF-kappa B/metabolism ; *Gastritis/metabolism/microbiology/pathology ; *Lactobacillaceae/physiology ; Helicobacter pylori ; *Helicobacter Infections/metabolism/microbiology/pathology ; Animals ; Mice ; Mice, Inbred C57BL ; Sulfones/pharmacology ; Nitriles/pharmacology ; Gastrointestinal Microbiome ; },
abstract = {Helicobacter pylori (H. pylori) infection and the resulting gastric inflammation are major contributors to gastric cancer development. Probiotics, particularly Lactobacillus, are promising for their anti-inflammatory potential, yet their exact mechanisms in inhibiting H. pylori-induced inflammation are unclear. In our previous study, Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) demonstrated strong anti-inflammatory effects against H. pylori infection in vivo, but its precise mechanisms were not fully understood. Here, we aimed to investigate how L. plantarum ZJ316 inhibits the inflammatory response to H. pylori infection. Our results demonstrated that L. plantarum ZJ316 effectively reduced the expression of pro-inflammatory cytokines in H. pylori-infected AGS cells. Mechanistically, L. plantarum ZJ316 inhibited the NF-κB signaling pathway by preventing the degradation of IκBα, suppressing p65 phosphorylation, and blocking the nuclear translocation of phosphorylated p65. Treatment with the NF-κB inhibitor BAY 11-7082 further decreased tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-1β (IL-1β) levels, confirming the inhibitory effect of L. plantarum ZJ316 on the NF-κB pathway. In H. pylori-infected mice, oral administration of L. plantarum ZJ316 significantly alleviated inflammatory cell infiltration, reduced TNF-α and pepsinogen II (PGII) levels, and increased interleukin-10 (IL-10) levels in serum. A comparative metagenomic analysis of the gastric microbiota revealed a decrease in Prevotella and Desulfovibrio, alongside an increase in Ligilactobacillus and Akkermansia, supporting the protective effects of L. plantarum ZJ316 and correlating with their decreased inflammatory response. In summary, administration of L. plantarum ZJ316 demonstrated robust anti-inflammatory effects against H. pylori infection by suppressing NF-κB signaling and promoting favorable changes in the gastric microbiota composition. Therefore, L. plantarum ZJ316 holds promise as a novel functional food for protecting the body against H. pylori infection.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Cell Line, Tumor
Humans
*Signal Transduction
Lactic Acid/metabolism
NF-kappa B/metabolism
*Gastritis/metabolism/microbiology/pathology
*Lactobacillaceae/physiology
Helicobacter pylori
*Helicobacter Infections/metabolism/microbiology/pathology
Animals
Mice
Mice, Inbred C57BL
Sulfones/pharmacology
Nitriles/pharmacology
Gastrointestinal Microbiome
RevDate: 2025-04-18
CmpDate: 2025-04-18
A randomised crossover clinical trial of the efficacy of an ultrasonic cleaner combined with a denture cleanser on the microbiome on removable dentures among community-dwelling older adults.
Journal of dentistry, 156:105709.
OBJECTIVE: To evaluate and characterise the microbial compositional changes of removable dentures after interventions by comparing the efficacy of the test arm (a portable self-operated ultrasonic cleaner combined with an enzymatic peroxide-based denture cleanser solution) to the control arm (immersion of the denture in the same cleanser solution followed by conventional brushing).
MATERIALS AND METHODS: A prospective, single-blind, block-randomised, two-period crossover, controlled clinical trial was conducted, involving 56 community-dwelling older adults wearing removable acrylic dentures. They were block-randomized into the test/control or control/test denture cleaning sequence. Type IIB Restriction-site Associated DNA for Microbiome metagenomic sequencing was adopted to characterize the species-resolved microbial composition for denture biofilm.
RESULTS: For the intervention effect, the overall microbial richness in both arms was not significantly different based on the Chao 1 index (P = 0.343). However, Beta diversity analysis (Jaccard qualitative distance matrix) demonstrated significant differences in the microbial community structures between the Test and Control arms after interventions, confirmed by the Permanova test (R[2] = 0.01118, P = 0.034). Among the opportunistic pathogenic bacteria, Pseudomonas aeruginosa was detected as one of the top 30 species by relative abundance at the end of the clinical trial, and Enterobacter kobei was significantly enriched in the control arm, as determined by LEfSe analysis.
CONCLUSIONS: The microbial community of denture biofilm samples after both interventions were significantly 'shifted' and had limited numbers of opportunistic pathogens, suggesting the interventions equally effective in mitigating the overall number of pathogenic bacteria.
CLINICAL SIGNIFICANCE: Denture cleaning intervention using ultrasonic cleaner combined with immersion in denture cleanser solution appears to be effective in shifting the denture microbiome with reduced pathogenic bacteria among community-dwelling denture wearers.
Additional Links: PMID-40127751
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40127751,
year = {2025},
author = {Lim, TW and Huang, S and Burrow, MF and McGrath, C},
title = {A randomised crossover clinical trial of the efficacy of an ultrasonic cleaner combined with a denture cleanser on the microbiome on removable dentures among community-dwelling older adults.},
journal = {Journal of dentistry},
volume = {156},
number = {},
pages = {105709},
doi = {10.1016/j.jdent.2025.105709},
pmid = {40127751},
issn = {1879-176X},
mesh = {Humans ; Cross-Over Studies ; *Denture Cleansers/therapeutic use/pharmacology ; Aged ; Female ; Male ; Single-Blind Method ; *Microbiota/drug effects ; Prospective Studies ; Biofilms/drug effects ; Aged, 80 and over ; *Denture, Partial, Removable/microbiology ; Independent Living ; Ultrasonics ; Toothbrushing ; },
abstract = {OBJECTIVE: To evaluate and characterise the microbial compositional changes of removable dentures after interventions by comparing the efficacy of the test arm (a portable self-operated ultrasonic cleaner combined with an enzymatic peroxide-based denture cleanser solution) to the control arm (immersion of the denture in the same cleanser solution followed by conventional brushing).
MATERIALS AND METHODS: A prospective, single-blind, block-randomised, two-period crossover, controlled clinical trial was conducted, involving 56 community-dwelling older adults wearing removable acrylic dentures. They were block-randomized into the test/control or control/test denture cleaning sequence. Type IIB Restriction-site Associated DNA for Microbiome metagenomic sequencing was adopted to characterize the species-resolved microbial composition for denture biofilm.
RESULTS: For the intervention effect, the overall microbial richness in both arms was not significantly different based on the Chao 1 index (P = 0.343). However, Beta diversity analysis (Jaccard qualitative distance matrix) demonstrated significant differences in the microbial community structures between the Test and Control arms after interventions, confirmed by the Permanova test (R[2] = 0.01118, P = 0.034). Among the opportunistic pathogenic bacteria, Pseudomonas aeruginosa was detected as one of the top 30 species by relative abundance at the end of the clinical trial, and Enterobacter kobei was significantly enriched in the control arm, as determined by LEfSe analysis.
CONCLUSIONS: The microbial community of denture biofilm samples after both interventions were significantly 'shifted' and had limited numbers of opportunistic pathogens, suggesting the interventions equally effective in mitigating the overall number of pathogenic bacteria.
CLINICAL SIGNIFICANCE: Denture cleaning intervention using ultrasonic cleaner combined with immersion in denture cleanser solution appears to be effective in shifting the denture microbiome with reduced pathogenic bacteria among community-dwelling denture wearers.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Cross-Over Studies
*Denture Cleansers/therapeutic use/pharmacology
Aged
Female
Male
Single-Blind Method
*Microbiota/drug effects
Prospective Studies
Biofilms/drug effects
Aged, 80 and over
*Denture, Partial, Removable/microbiology
Independent Living
Ultrasonics
Toothbrushing
RevDate: 2025-04-17
CmpDate: 2025-04-17
The role of urine microbiota in culture-negative patients with pyuria.
World journal of urology, 43(1):227.
BACKGROUND: Pyuria is usually caused by bacteria and usually results in antibiotic prescriptions. However, traditional urine culture is time-consuming and has a high false negative possibility. Additionally, the role of urine viruses in pyuria is unclear. Metagenomics can enhance the precision and efficiency of diagnosis by directly sequencing the microbiota in urine. We aimed to determine the association of urine microbiota in patients with or without pyuria and culture negative.
METHODS: In this retrospective study, we screened urine samples from patients who received whole genome sequencing (WGS) and had a negative urine culture from October 2021 to May 2024. We compared differences in the top 10 detected genera of urine microbiota between the pyuria group and the non-pyuria group. Multivariable analysis was used for correlation analysis and performed to odds ratio (OR) and OR with 95% confidence interval (CI). The receiver operating characteristic (ROC) curve analyses tested the predictive ability of associated microbiota to pyuria.
RESULTS: We found 29 microbial genera including 2 viral genera. Escherichia [OR 11.688 (95%CI 2.190-62.362), p = 0.004], Gardnerella [OR 9.904 (95%CI 2.180-45.005), p = 0.003] or Polyomavirus [OR 5.205 (95%CI 1.295-20.919), p = 0.020] was associated with the independent risk factors of pyuria, while Lactobacillus was associated with a decreased risk of pyuria [OR 17.273 (95%CI 1.297-230.061), p = 0.031]. An integrated logistic regression model of Escherichia, Gardnerella, Polyomavirus, and Lactobacillus exhibited a predictive power for pyuria with the area under curve (AUC) of 0.8132 [95%CI (0.7098-0.9167), p < 0.001].
CONCLUSION: Urine microbiota is diverse. Escherichia, Gardnerella, or Polyomavirus are independently associated with pyuria, while Lactobacillus is a positive factor against pyuria.
Additional Links: PMID-40244477
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40244477,
year = {2025},
author = {Li, J and Zhang, Y and He, L},
title = {The role of urine microbiota in culture-negative patients with pyuria.},
journal = {World journal of urology},
volume = {43},
number = {1},
pages = {227},
pmid = {40244477},
issn = {1433-8726},
mesh = {Humans ; *Pyuria/microbiology/virology/urine ; Retrospective Studies ; Male ; Female ; *Microbiota ; Middle Aged ; *Urine/microbiology/virology ; Aged ; Adult ; },
abstract = {BACKGROUND: Pyuria is usually caused by bacteria and usually results in antibiotic prescriptions. However, traditional urine culture is time-consuming and has a high false negative possibility. Additionally, the role of urine viruses in pyuria is unclear. Metagenomics can enhance the precision and efficiency of diagnosis by directly sequencing the microbiota in urine. We aimed to determine the association of urine microbiota in patients with or without pyuria and culture negative.
METHODS: In this retrospective study, we screened urine samples from patients who received whole genome sequencing (WGS) and had a negative urine culture from October 2021 to May 2024. We compared differences in the top 10 detected genera of urine microbiota between the pyuria group and the non-pyuria group. Multivariable analysis was used for correlation analysis and performed to odds ratio (OR) and OR with 95% confidence interval (CI). The receiver operating characteristic (ROC) curve analyses tested the predictive ability of associated microbiota to pyuria.
RESULTS: We found 29 microbial genera including 2 viral genera. Escherichia [OR 11.688 (95%CI 2.190-62.362), p = 0.004], Gardnerella [OR 9.904 (95%CI 2.180-45.005), p = 0.003] or Polyomavirus [OR 5.205 (95%CI 1.295-20.919), p = 0.020] was associated with the independent risk factors of pyuria, while Lactobacillus was associated with a decreased risk of pyuria [OR 17.273 (95%CI 1.297-230.061), p = 0.031]. An integrated logistic regression model of Escherichia, Gardnerella, Polyomavirus, and Lactobacillus exhibited a predictive power for pyuria with the area under curve (AUC) of 0.8132 [95%CI (0.7098-0.9167), p < 0.001].
CONCLUSION: Urine microbiota is diverse. Escherichia, Gardnerella, or Polyomavirus are independently associated with pyuria, while Lactobacillus is a positive factor against pyuria.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Pyuria/microbiology/virology/urine
Retrospective Studies
Male
Female
*Microbiota
Middle Aged
*Urine/microbiology/virology
Aged
Adult
RevDate: 2025-04-17
CmpDate: 2025-04-17
Potential Role of Malassezia restricta in Pterygium Development.
International journal of molecular sciences, 26(7): pii:ijms26072976.
Pterygium is a condition affecting the ocular surface, marked by a triangular-shaped growth of fibrotic tissue extending from the nasal conjunctiva toward the corneal center, potentially causing visual impairment. While ultraviolet (UV)light exposure is the primary risk factor for pterygium, its underlying cause remains unclear. In order to better understand the true genesis of pterygium development, we investigated pterygium tissue and compared it with healthy conjunctiva controls. Given the eye's direct environmental exposure, we analyzed the microbiota composition using metagenomic sequencing of pterygium tissue to identify microbes potentially associated with this condition. Metagenomic sequencing revealed a higher prevalence of the fungus Malassezia restricta in five pterygium samples, confirmed by in situ hybridization. The CHIT1 gene, which plays a role in antifungal defenses, displayed the highest expression in five pterygium tissue samples compared to healthy conjunctiva controls, suggesting the potential involvement of Malassezia restricta in pterygium development. Gene expression profiling of pterygium highlighted an IL-33 and IL-4 gene expression signature, along with an increased presence of M2 macrophages, emphasizing their role in promoting fibrosis-a hallmark feature of pterygium. The detection of Malassezia restricta in the pterygium samples and associated molecular changes provides novel insights into the ocular microbiome and raises the possibility of Malassezia's involvement in pterygium pathology.
Additional Links: PMID-40243577
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40243577,
year = {2025},
author = {Paradzik Simunovic, M and Degoricija, M and Korac-Prlic, J and Lesin, M and Stanic, R and Puljak, L and Olujic, I and Marin Lovric, J and Vucinovic, A and Ljubic, Z and Thissen, J and Reen Kok, C and Jaing, C and Bucan, K and Terzic, J},
title = {Potential Role of Malassezia restricta in Pterygium Development.},
journal = {International journal of molecular sciences},
volume = {26},
number = {7},
pages = {},
doi = {10.3390/ijms26072976},
pmid = {40243577},
issn = {1422-0067},
support = {IP-2020-02-8921//Croatian Science Foundation/ ; },
mesh = {Humans ; *Pterygium/microbiology/pathology/genetics ; *Malassezia/genetics/isolation & purification ; Male ; Female ; Middle Aged ; Conjunctiva/microbiology/pathology ; Microbiota ; Aged ; Gene Expression Profiling ; },
abstract = {Pterygium is a condition affecting the ocular surface, marked by a triangular-shaped growth of fibrotic tissue extending from the nasal conjunctiva toward the corneal center, potentially causing visual impairment. While ultraviolet (UV)light exposure is the primary risk factor for pterygium, its underlying cause remains unclear. In order to better understand the true genesis of pterygium development, we investigated pterygium tissue and compared it with healthy conjunctiva controls. Given the eye's direct environmental exposure, we analyzed the microbiota composition using metagenomic sequencing of pterygium tissue to identify microbes potentially associated with this condition. Metagenomic sequencing revealed a higher prevalence of the fungus Malassezia restricta in five pterygium samples, confirmed by in situ hybridization. The CHIT1 gene, which plays a role in antifungal defenses, displayed the highest expression in five pterygium tissue samples compared to healthy conjunctiva controls, suggesting the potential involvement of Malassezia restricta in pterygium development. Gene expression profiling of pterygium highlighted an IL-33 and IL-4 gene expression signature, along with an increased presence of M2 macrophages, emphasizing their role in promoting fibrosis-a hallmark feature of pterygium. The detection of Malassezia restricta in the pterygium samples and associated molecular changes provides novel insights into the ocular microbiome and raises the possibility of Malassezia's involvement in pterygium pathology.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Pterygium/microbiology/pathology/genetics
*Malassezia/genetics/isolation & purification
Male
Female
Middle Aged
Conjunctiva/microbiology/pathology
Microbiota
Aged
Gene Expression Profiling
RevDate: 2025-04-16
Population dynamics of a bacterial consortium from a marine sediment of the Gulf of Mexico during biodegradation of the aromatic fraction of heavy crude oil.
International microbiology : the official journal of the Spanish Society for Microbiology [Epub ahead of print].
In the marine environment, uncontained crude oil is dispersed and degraded by abiotic or biotic processes; native bacterial populations gradually adapt to integrate interspecific and intraspecific metabolic networks for efficient and dynamic utilization of xenobiotic substrates as carbon source. Aromatic compounds accumulate in marine sediments and bacterial populations at these sites play a crucial role in the mobilization of those complex molecules into the global geochemical cycles. The aim of this work was to use native bacteria from a marine sediment sample in the Gulf of Mexico to enhance the biodegradation of the aromatic fraction from a heavy crude oil, as the sole carbon source, during a 200-day microcosm experiment. This process involved the gradual increase of the aromatic fraction into the culture to promote bacterial enrichment; the increase in viable cells correlated well with a biodegradation pattern of the aromatic fraction at some points. Bacterial biodiversity, as revealed by metagenomic and microbiological approaches, indicates that bacterial groups are present at all fraction concentrations, but with changes in abundance, richness and dominance. Population dynamics revealed the presence of bacteria that modify emulsification and surface tension reduction values, which could promote the incorporation of the highly hydrophobic polyaromatic compounds into the culture aqueous phase for their biodegradation by hydrocarbonoclastic bacteria present. On the other hand, the presence of non-hydrocarbonoclastic bacteria probably is sustained by cross-feeding events involving sugars, amino acids, short carbon compounds, lipids produced by the former bacteria by co-metabolism of complex aromatic substrates, which are transformed into diverse biomolecules for biofilm development to promote a bacterial population dynamics adapted to this environment.
Additional Links: PMID-40240641
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40240641,
year = {2025},
author = {Muñoz-Rivera, MP and Martínez-Morales, F and Guzmán-Morales, D and Rivera-Ramírez, A and Sánchez-Reyes, A and Trejo-Hernández, MR},
title = {Population dynamics of a bacterial consortium from a marine sediment of the Gulf of Mexico during biodegradation of the aromatic fraction of heavy crude oil.},
journal = {International microbiology : the official journal of the Spanish Society for Microbiology},
volume = {},
number = {},
pages = {},
pmid = {40240641},
issn = {1618-1905},
abstract = {In the marine environment, uncontained crude oil is dispersed and degraded by abiotic or biotic processes; native bacterial populations gradually adapt to integrate interspecific and intraspecific metabolic networks for efficient and dynamic utilization of xenobiotic substrates as carbon source. Aromatic compounds accumulate in marine sediments and bacterial populations at these sites play a crucial role in the mobilization of those complex molecules into the global geochemical cycles. The aim of this work was to use native bacteria from a marine sediment sample in the Gulf of Mexico to enhance the biodegradation of the aromatic fraction from a heavy crude oil, as the sole carbon source, during a 200-day microcosm experiment. This process involved the gradual increase of the aromatic fraction into the culture to promote bacterial enrichment; the increase in viable cells correlated well with a biodegradation pattern of the aromatic fraction at some points. Bacterial biodiversity, as revealed by metagenomic and microbiological approaches, indicates that bacterial groups are present at all fraction concentrations, but with changes in abundance, richness and dominance. Population dynamics revealed the presence of bacteria that modify emulsification and surface tension reduction values, which could promote the incorporation of the highly hydrophobic polyaromatic compounds into the culture aqueous phase for their biodegradation by hydrocarbonoclastic bacteria present. On the other hand, the presence of non-hydrocarbonoclastic bacteria probably is sustained by cross-feeding events involving sugars, amino acids, short carbon compounds, lipids produced by the former bacteria by co-metabolism of complex aromatic substrates, which are transformed into diverse biomolecules for biofilm development to promote a bacterial population dynamics adapted to this environment.},
}
RevDate: 2025-04-16
CmpDate: 2025-04-16
Analysis of the bronchoalveolar lavage fluid microbial flora in COPD patients at different lung function during acute exacerbation.
Scientific reports, 15(1):13179.
There is a correlation between the dysbiosis of the respiratory microbiota and the occurrence, severity, frequency, and mortality of Chronic Obstructive Pulmonary Disease (COPD). However, it is not unclear if there are differences in the bronchoalveolar lavage fluid (BALF) microbiota among patients at differente lung function. In this study, BALF samples were collected from 70 COPD patients experiencing acute exacerbations (AECOPD). The patients were divided into a mild group (FEV1/pre ≥ 50; PFT I, n = 50) and a severe group (FEV1/pre < 50; PFT II, n = 20) according to the lung function: or a frequent exacerbation (FE, n = 41) group and a non-frequent exacerbation (NFE, n = 29) group according to their exacerbation history. Microbiota analysis of BALF samples was conducted using mNGS and bioinfromatic analysis. Compared to PFT I group, PFT II group exhibited a significant decrease in species diversity (Shannon index), as well as a significant reduction in total species count and richness (Chao1, ACE indices). NFE group demonstrated diversity similar to that of FE group. Conversely, the microbial diversity of NFE group was comparable to that of FE group. The most abundant bacterial genera were Streptococcus, Prevotella, Veillonella, Rod-shaped Bacillus, and Rothia. Aspergillus was the most dominant fungal genus in AECOPD. Lymphocryptovirus was the most prevalent virus in AECOPD.Compared to the PFT I group, Corynebacterium's abundance significantly increased in PFT II group. Furthermore, FE group showed a notable increase in Streptococcus mitis abundance relative to NFE group. Bubble plot analysis revealed a significant increase in Moraxella, Fusobacterium, Haemophilus, Pseudomonas, Streptomyces, and Klebsiella in PFT II group, including a notable increase in typical Veillonella, Actinomyces, and Gordonia. The NFE group exhibited a significant increase in Bacteroides and Prevotella's relative abundance. Spearman correlation analysis revealed strong positive correlations among certain microbial communities. There exists a significant variation in microbial composition across groups of AECOPD patients at different lung function. Specifically, patients with severe airflow limitations exhibit a significant reduction in microbial diversity. Additionally, distinct bacterial taxa are enriched in patients characterized by varying levels of airflow limitation and exacerbation frequency. These observations offer vital insights into the pathogenesis of AECOPD, suggesting a potentially crucial role for the microbiota in its development. Such findings pave the way for identifying potential therapeutic targets and intervention strategies, ultimately aiming to improve treatment outcomes for AECOPD patients.
Additional Links: PMID-40240456
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40240456,
year = {2025},
author = {Bahetjan, K and Yu-Xia, and Lin, S and Aili, N and Yang, H and Du, S},
title = {Analysis of the bronchoalveolar lavage fluid microbial flora in COPD patients at different lung function during acute exacerbation.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {13179},
pmid = {40240456},
issn = {2045-2322},
mesh = {Humans ; *Pulmonary Disease, Chronic Obstructive/microbiology/physiopathology ; *Bronchoalveolar Lavage Fluid/microbiology ; Male ; Female ; Aged ; Middle Aged ; *Microbiota ; Bacteria/classification/genetics/isolation & purification ; *Lung/microbiology/physiopathology ; Dysbiosis/microbiology ; },
abstract = {There is a correlation between the dysbiosis of the respiratory microbiota and the occurrence, severity, frequency, and mortality of Chronic Obstructive Pulmonary Disease (COPD). However, it is not unclear if there are differences in the bronchoalveolar lavage fluid (BALF) microbiota among patients at differente lung function. In this study, BALF samples were collected from 70 COPD patients experiencing acute exacerbations (AECOPD). The patients were divided into a mild group (FEV1/pre ≥ 50; PFT I, n = 50) and a severe group (FEV1/pre < 50; PFT II, n = 20) according to the lung function: or a frequent exacerbation (FE, n = 41) group and a non-frequent exacerbation (NFE, n = 29) group according to their exacerbation history. Microbiota analysis of BALF samples was conducted using mNGS and bioinfromatic analysis. Compared to PFT I group, PFT II group exhibited a significant decrease in species diversity (Shannon index), as well as a significant reduction in total species count and richness (Chao1, ACE indices). NFE group demonstrated diversity similar to that of FE group. Conversely, the microbial diversity of NFE group was comparable to that of FE group. The most abundant bacterial genera were Streptococcus, Prevotella, Veillonella, Rod-shaped Bacillus, and Rothia. Aspergillus was the most dominant fungal genus in AECOPD. Lymphocryptovirus was the most prevalent virus in AECOPD.Compared to the PFT I group, Corynebacterium's abundance significantly increased in PFT II group. Furthermore, FE group showed a notable increase in Streptococcus mitis abundance relative to NFE group. Bubble plot analysis revealed a significant increase in Moraxella, Fusobacterium, Haemophilus, Pseudomonas, Streptomyces, and Klebsiella in PFT II group, including a notable increase in typical Veillonella, Actinomyces, and Gordonia. The NFE group exhibited a significant increase in Bacteroides and Prevotella's relative abundance. Spearman correlation analysis revealed strong positive correlations among certain microbial communities. There exists a significant variation in microbial composition across groups of AECOPD patients at different lung function. Specifically, patients with severe airflow limitations exhibit a significant reduction in microbial diversity. Additionally, distinct bacterial taxa are enriched in patients characterized by varying levels of airflow limitation and exacerbation frequency. These observations offer vital insights into the pathogenesis of AECOPD, suggesting a potentially crucial role for the microbiota in its development. Such findings pave the way for identifying potential therapeutic targets and intervention strategies, ultimately aiming to improve treatment outcomes for AECOPD patients.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Pulmonary Disease, Chronic Obstructive/microbiology/physiopathology
*Bronchoalveolar Lavage Fluid/microbiology
Male
Female
Aged
Middle Aged
*Microbiota
Bacteria/classification/genetics/isolation & purification
*Lung/microbiology/physiopathology
Dysbiosis/microbiology
RevDate: 2025-04-16
CmpDate: 2025-04-16
Seasonal bacterial profiles of Vellozia with distinct drought adaptations in the megadiverse campos rupestres.
Scientific data, 12(1):636.
Microbial communities can vary as a function of seasonal precipitation and the phenotypic characteristics of the prevailing plant species in an ecosystem. The Brazilian campos rupestres (CRs) host a unique flora adapted to harsh conditions, including severe droughts and nutrient-poor soils. Velloziaceae, a dominant angiosperm family in CRs, exhibit contrasting drought adaptive strategies, prominently desiccation tolerance and dehydration avoidance. Here, we created a comprehensive dataset of microbial composition and dynamics of bulk soil and distinct plant compartments (leaf blade, dry sheath, aerial root, and underground root) from two desiccation-tolerant and two dehydration-avoiding, non-desiccation-tolerant Vellozia species, across four seasons (beginning and end of rainy and dry seasons) through 16S rRNA gene sequencing of 374 samples. This dataset also includes 38 soil metagenomes encompassing dry and rainy seasons from both drought adaptive strategies. Exploring an overlooked aspect of CRs biology offers significant potential for understanding plant-microbial associations and adaptations to water availability in tropical regions. The genetic data and metadata support further research for hypothesis testing and cross-study comparisons.
Additional Links: PMID-40240384
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40240384,
year = {2025},
author = {Pinto, OHB and Biazotti, BB and de Souza, RSC and Yassitepe, JÉCT and Arruda, P and Dante, RA and Gerhardt, IR},
title = {Seasonal bacterial profiles of Vellozia with distinct drought adaptations in the megadiverse campos rupestres.},
journal = {Scientific data},
volume = {12},
number = {1},
pages = {636},
pmid = {40240384},
issn = {2052-4463},
support = {2022/08797-4//Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation)/ ; 2022/08797-4//Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation)/ ; },
mesh = {*Droughts ; Seasons ; *Soil Microbiology ; Brazil ; RNA, Ribosomal, 16S/genetics ; Adaptation, Physiological ; *Microbiota ; Bacteria/genetics/classification ; },
abstract = {Microbial communities can vary as a function of seasonal precipitation and the phenotypic characteristics of the prevailing plant species in an ecosystem. The Brazilian campos rupestres (CRs) host a unique flora adapted to harsh conditions, including severe droughts and nutrient-poor soils. Velloziaceae, a dominant angiosperm family in CRs, exhibit contrasting drought adaptive strategies, prominently desiccation tolerance and dehydration avoidance. Here, we created a comprehensive dataset of microbial composition and dynamics of bulk soil and distinct plant compartments (leaf blade, dry sheath, aerial root, and underground root) from two desiccation-tolerant and two dehydration-avoiding, non-desiccation-tolerant Vellozia species, across four seasons (beginning and end of rainy and dry seasons) through 16S rRNA gene sequencing of 374 samples. This dataset also includes 38 soil metagenomes encompassing dry and rainy seasons from both drought adaptive strategies. Exploring an overlooked aspect of CRs biology offers significant potential for understanding plant-microbial associations and adaptations to water availability in tropical regions. The genetic data and metadata support further research for hypothesis testing and cross-study comparisons.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Droughts
Seasons
*Soil Microbiology
Brazil
RNA, Ribosomal, 16S/genetics
Adaptation, Physiological
*Microbiota
Bacteria/genetics/classification
RevDate: 2025-04-16
CmpDate: 2025-04-16
Expansion of a bacterial operon during cancer treatment ameliorates fluoropyrimidine toxicity.
Science translational medicine, 17(794):eadq8870.
Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Here, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal profiling of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. Substantial shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities were revealed by 16S rRNA gene sequencing. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which was sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA[+] bacteria depleted 5-FU in gut microbiota grown ex vivo and in the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA[+] Escherichia coli, or preTA-high stool from patients with CRC. Last, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach may be generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.
Additional Links: PMID-40238917
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40238917,
year = {2025},
author = {Trepka, KR and Kidder, WA and Kyaw, TS and Halsey, T and Olson, CA and Ortega, EF and Noecker, C and Upadhyay, V and Stanfield, D and Steiding, P and Guthrie, BGH and Spanogiannopoulos, P and Dumlao, D and Turnbaugh, JA and Stachler, MD and Van Blarigan, EL and Venook, AP and Atreya, CE and Turnbaugh, PJ},
title = {Expansion of a bacterial operon during cancer treatment ameliorates fluoropyrimidine toxicity.},
journal = {Science translational medicine},
volume = {17},
number = {794},
pages = {eadq8870},
doi = {10.1126/scitranslmed.adq8870},
pmid = {40238917},
issn = {1946-6242},
mesh = {Animals ; Humans ; *Operon/genetics ; *Fluorouracil/therapeutic use/toxicity/adverse effects ; Gastrointestinal Microbiome/drug effects/genetics ; Mice ; *Colorectal Neoplasms/drug therapy/microbiology ; *Pyrimidines/toxicity ; *Bacteria/genetics/drug effects ; RNA, Ribosomal, 16S/genetics ; Female ; Male ; },
abstract = {Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Here, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal profiling of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. Substantial shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities were revealed by 16S rRNA gene sequencing. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which was sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA[+] bacteria depleted 5-FU in gut microbiota grown ex vivo and in the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA[+] Escherichia coli, or preTA-high stool from patients with CRC. Last, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach may be generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Humans
*Operon/genetics
*Fluorouracil/therapeutic use/toxicity/adverse effects
Gastrointestinal Microbiome/drug effects/genetics
Mice
*Colorectal Neoplasms/drug therapy/microbiology
*Pyrimidines/toxicity
*Bacteria/genetics/drug effects
RNA, Ribosomal, 16S/genetics
Female
Male
RevDate: 2025-04-16
CmpDate: 2025-04-16
Metagenomic and proteomic analyses reveal similar reproductive microbial profiles and shared functional pathways in uterine immune regulation in mares and jennies.
PloS one, 20(4):e0321389 pii:PONE-D-24-59384.
This study aims to unveil potential differences in the vaginal and uterine microbiomes in mares and jennies, and to identify possible mechanisms involved in uterine immune homeostasis. The microbiota was characterized using 16S rRNA sequencing, and the uterine proteome was analyzed using UHPLC/MS/MS in 18 samples from healthy mares and 14 from jennies. While taxonomic analysis revealed high interspecies similarities, β-diversity analysis showed distinct clustering, with only two vaginal taxa and five uterine taxa differing between species. Despite compositional differences, PICRUSt analysis suggested minimal variations in predicted functional pathways across species. Comparing vaginal and uterine microbiota within the same species revealed overlapping bacterial taxa, but significant differences in α- and β-diversity and functional pathways. The uterine microbiota of both species was dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with abundant taxa like Streptococcus, Pseudomonas, Bacillus, Corynebacterium, and Staphylococcus, many of which are frequently associated with endometritis. The presence of Lactobacillus in the equine reproductive tract was minimal or non-existent. KEGG functional pathway analysis predicted that uterine microbiota of both species utilize metabolic pathways with potential immunomodulatory effects. Proteomic enrichment analysis showed that numerous overexpressed uterine proteins in both species are linked to adaptive and innate immune regulation and defense mechanisms against symbionts. Gene enrichment analysis identified several enriched Gene Ontology terms, including response to bacterial stimuli, humoral immune regulation, and TGF-beta receptor signaling, underscoring microbial-host interactions. The uterine microbiota may play a vital role in maintaining immune balance. Further research is required to confirm its interaction with the uterine immune system and clarify the mechanisms involved.
Additional Links: PMID-40238748
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40238748,
year = {2025},
author = {da Silva-Álvarez, E and Gómez-Arrones, V and Correa-Fiz, F and Martín-Cano, FE and Gaitskell-Phillips, G and Carrasco, JJ and Rey, J and Aparicio, IM and Peña, FJ and Alonso, JM and Ortega-Ferrusola, C},
title = {Metagenomic and proteomic analyses reveal similar reproductive microbial profiles and shared functional pathways in uterine immune regulation in mares and jennies.},
journal = {PloS one},
volume = {20},
number = {4},
pages = {e0321389},
doi = {10.1371/journal.pone.0321389},
pmid = {40238748},
issn = {1932-6203},
mesh = {Animals ; Female ; Horses/microbiology/immunology ; *Uterus/microbiology/immunology/metabolism ; Proteomics/methods ; *Microbiota/genetics ; RNA, Ribosomal, 16S/genetics ; *Metagenomics ; Vagina/microbiology/immunology ; Bacteria/genetics/classification ; Proteome ; },
abstract = {This study aims to unveil potential differences in the vaginal and uterine microbiomes in mares and jennies, and to identify possible mechanisms involved in uterine immune homeostasis. The microbiota was characterized using 16S rRNA sequencing, and the uterine proteome was analyzed using UHPLC/MS/MS in 18 samples from healthy mares and 14 from jennies. While taxonomic analysis revealed high interspecies similarities, β-diversity analysis showed distinct clustering, with only two vaginal taxa and five uterine taxa differing between species. Despite compositional differences, PICRUSt analysis suggested minimal variations in predicted functional pathways across species. Comparing vaginal and uterine microbiota within the same species revealed overlapping bacterial taxa, but significant differences in α- and β-diversity and functional pathways. The uterine microbiota of both species was dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with abundant taxa like Streptococcus, Pseudomonas, Bacillus, Corynebacterium, and Staphylococcus, many of which are frequently associated with endometritis. The presence of Lactobacillus in the equine reproductive tract was minimal or non-existent. KEGG functional pathway analysis predicted that uterine microbiota of both species utilize metabolic pathways with potential immunomodulatory effects. Proteomic enrichment analysis showed that numerous overexpressed uterine proteins in both species are linked to adaptive and innate immune regulation and defense mechanisms against symbionts. Gene enrichment analysis identified several enriched Gene Ontology terms, including response to bacterial stimuli, humoral immune regulation, and TGF-beta receptor signaling, underscoring microbial-host interactions. The uterine microbiota may play a vital role in maintaining immune balance. Further research is required to confirm its interaction with the uterine immune system and clarify the mechanisms involved.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Female
Horses/microbiology/immunology
*Uterus/microbiology/immunology/metabolism
Proteomics/methods
*Microbiota/genetics
RNA, Ribosomal, 16S/genetics
*Metagenomics
Vagina/microbiology/immunology
Bacteria/genetics/classification
Proteome
RevDate: 2025-04-16
CmpDate: 2025-04-16
Gut commensal bacterium Bacteroides vulgatus exacerbates helminth-induced cardiac fibrosis through succinate accumulation.
PLoS pathogens, 21(4):e1013069 pii:PPATHOGENS-D-24-02385.
Trichinella spiralis (Ts) is known to cause cardiac fibrosis, which is a critical precursor to various heart diseases, and its progression is influenced by metabolic changes. However, the metabolic mechanisms remain unclear. Here, we observed that Ts-infected mice exhibited cardiac fibrosis along with elevated succinate levels in the heart using metabolomic analysis. Administration of succinate exacerbated fibrosis during Ts infection, while deficiency in succinate receptor 1 (Sucnr1) alleviated the condition, highlighting the role of the succinate-Sucnr1 axis in fibrosis development. Furthermore, metagenomics sequencing showed that Ts-infected mice had a higher abundance ratio of succinate-producing bacteria to succinate-consuming bacteria in the intestines. Notably, the succinate-producer Bacteroides vulgatus was enriched in Ts group. Oral supplementation with B. vulgatus aggravated Ts-induced cardiac fibrosis. In summary, our findings underscore the succinate-Sucnr1 axis as a critical pathway in helminth-induced cardiac fibrosis and highlight the potential of targeting this axis for therapeutic interventions. This study presents novel insights into the gut-heart axis, revealing innovative strategies for managing cardiovascular complications associated with helminth infections.
Additional Links: PMID-40238740
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40238740,
year = {2025},
author = {Wang, J and Yin, J and Liu, X and Liu, Y and Jin, X},
title = {Gut commensal bacterium Bacteroides vulgatus exacerbates helminth-induced cardiac fibrosis through succinate accumulation.},
journal = {PLoS pathogens},
volume = {21},
number = {4},
pages = {e1013069},
doi = {10.1371/journal.ppat.1013069},
pmid = {40238740},
issn = {1553-7374},
mesh = {Animals ; *Succinic Acid/metabolism ; Mice ; Fibrosis ; *Gastrointestinal Microbiome/physiology ; *Trichinellosis/complications/metabolism/pathology ; *Trichinella spiralis ; *Bacteroides/metabolism ; Mice, Inbred C57BL ; Receptors, G-Protein-Coupled/metabolism ; Myocardium/pathology/metabolism ; Male ; },
abstract = {Trichinella spiralis (Ts) is known to cause cardiac fibrosis, which is a critical precursor to various heart diseases, and its progression is influenced by metabolic changes. However, the metabolic mechanisms remain unclear. Here, we observed that Ts-infected mice exhibited cardiac fibrosis along with elevated succinate levels in the heart using metabolomic analysis. Administration of succinate exacerbated fibrosis during Ts infection, while deficiency in succinate receptor 1 (Sucnr1) alleviated the condition, highlighting the role of the succinate-Sucnr1 axis in fibrosis development. Furthermore, metagenomics sequencing showed that Ts-infected mice had a higher abundance ratio of succinate-producing bacteria to succinate-consuming bacteria in the intestines. Notably, the succinate-producer Bacteroides vulgatus was enriched in Ts group. Oral supplementation with B. vulgatus aggravated Ts-induced cardiac fibrosis. In summary, our findings underscore the succinate-Sucnr1 axis as a critical pathway in helminth-induced cardiac fibrosis and highlight the potential of targeting this axis for therapeutic interventions. This study presents novel insights into the gut-heart axis, revealing innovative strategies for managing cardiovascular complications associated with helminth infections.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Succinic Acid/metabolism
Mice
Fibrosis
*Gastrointestinal Microbiome/physiology
*Trichinellosis/complications/metabolism/pathology
*Trichinella spiralis
*Bacteroides/metabolism
Mice, Inbred C57BL
Receptors, G-Protein-Coupled/metabolism
Myocardium/pathology/metabolism
Male
RevDate: 2025-04-16
CmpDate: 2025-04-16
Exclusive breastfeeding is associated with the gut microbiome maturation in infants according to delivery mode.
Gut microbes, 17(1):2493900.
Exclusive breastfeeding (EBF) plays a crucial role in infant gut microbiome assembly and development. However, few studies have investigated the effects of EBF in restoring a perturbed microbiome. In this study, we applied whole metagenomic sequencing to assess the gut microbiome assembly in 525 Brazilian infants from 3 to 9 months of age of the Germina Cohort, demonstrating the early determinants of microbial taxonomy and function modulation. Our analysis shows that EBF alters the relative abundance of genes related to the microbiome taxonomy and function, with effects varying by delivery mode. EBF alters the pattern of carbohydrates, lipid metabolism, and cell structure pathways depending on the delivery mode. The microbiome age is closer to chronological infant age in EBF than in non-EBF infants, meaning a lower microbiome maturation index (MMI). Using a complementary machine learning approach, we show that Escherichia coli, Ruminococcus gnavus, and Clostridium neonatale, as well as vitamin K and o-antigen pathways contribute strongly to EBF prediction. Moreover, EBF influences the microbiome maturation in early life, toward a microbiome age more similar to the chronological infant's age.
Additional Links: PMID-40237336
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40237336,
year = {2025},
author = {Naspolini, NF and Schüroff, PA and Vanzele, PAR and Pereira-Santos, D and Valim, TA and Bonham, KS and Fujita, A and Passos-Bueno, MR and Beltrão-Braga, PCB and Carvalho, ACPLF and Klepac-Ceraj, V and Polanczyk, GV and Campos, AC and Taddei, CR},
title = {Exclusive breastfeeding is associated with the gut microbiome maturation in infants according to delivery mode.},
journal = {Gut microbes},
volume = {17},
number = {1},
pages = {2493900},
doi = {10.1080/19490976.2025.2493900},
pmid = {40237336},
issn = {1949-0984},
mesh = {Humans ; *Gastrointestinal Microbiome ; Infant ; *Breast Feeding ; Female ; *Bacteria/classification/genetics/isolation & purification ; Male ; Brazil ; Feces/microbiology ; Metagenomics ; *Delivery, Obstetric/methods ; Cohort Studies ; Infant, Newborn ; },
abstract = {Exclusive breastfeeding (EBF) plays a crucial role in infant gut microbiome assembly and development. However, few studies have investigated the effects of EBF in restoring a perturbed microbiome. In this study, we applied whole metagenomic sequencing to assess the gut microbiome assembly in 525 Brazilian infants from 3 to 9 months of age of the Germina Cohort, demonstrating the early determinants of microbial taxonomy and function modulation. Our analysis shows that EBF alters the relative abundance of genes related to the microbiome taxonomy and function, with effects varying by delivery mode. EBF alters the pattern of carbohydrates, lipid metabolism, and cell structure pathways depending on the delivery mode. The microbiome age is closer to chronological infant age in EBF than in non-EBF infants, meaning a lower microbiome maturation index (MMI). Using a complementary machine learning approach, we show that Escherichia coli, Ruminococcus gnavus, and Clostridium neonatale, as well as vitamin K and o-antigen pathways contribute strongly to EBF prediction. Moreover, EBF influences the microbiome maturation in early life, toward a microbiome age more similar to the chronological infant's age.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome
Infant
*Breast Feeding
Female
*Bacteria/classification/genetics/isolation & purification
Male
Brazil
Feces/microbiology
Metagenomics
*Delivery, Obstetric/methods
Cohort Studies
Infant, Newborn
RevDate: 2025-04-15
CmpDate: 2025-04-15
Neoadjuvant cobimetinib and atezolizumab with or without vemurafenib for stage III melanoma: outcomes and the impact of the microbiome from the NeoACTIVATE trial.
Journal for immunotherapy of cancer, 13(4): pii:jitc-2025-011706.
BACKGROUND: Neoadjuvant treatment has become standard for patients with high-risk operable stage III melanoma, but the optimal regimen is unknown. Targeted therapy approaches yield high pathological response rates, while immunotherapy regimens show favorable recurrence-free survival (RFS). NeoACTIVATE was designed to address whether a neoadjuvant combination of both targeted therapy and immunotherapy might leverage the benefits of each.
METHODS: We tested neoadjuvant treatment with 12 weeks of vemurafenib, cobimetinib, and atezolizumab for patients with BRAF-mutated (BRAFm) melanoma (cohort A) and cobimetinib and atezolizumab for patients with BRAF-wild-type (BRAFwt) melanoma (cohort B), regimens which we have shown generate a substantial major pathological response. After therapeutic lymph node dissection, patients received 24 weeks of adjuvant atezolizumab. Here, we report survival outcomes and their association with biomarkers assayed among the gut microbiome and peripheral blood immune subsets.
RESULTS: With 49 months median follow-up, the median RFS was not reached for cohort A and was 40.8 months for cohort B. At 24 months after operation, 2 of 14 cohort A patients and 4 of 13 cohort B patients had experienced distant relapse. Key findings from correlative analyses included diversity, taxonomic and functional metagenomic gut microbiome signals associated with distant metastasis-free survival at 2 years. Notably, we observed a strong correlation between low microbial arginine biosynthesis (required for T-cell activation and effector function) and early distant recurrence (p=0.0005), which correlated with taxonomic differential abundance findings. Peripheral blood immune monitoring revealed increased double-positive (CD4+CD8+) T cells in patients with early recurrence.
CONCLUSIONS: Neoadjuvant treatment with cobimetinib and atezolizumab±vemurafenib was associated with a low rate of distant metastasis in patients with high-risk stage III melanoma. Freedom from early distant metastasis was highly associated with taxonomic differences in gut microbiome structure and with functional pathway alterations known to modulate T cell immunity. Identification of predictive biomarkers will permit optimization of neoadjuvant therapy regimens for individual patients.
TRIAL REGISTRATION NUMBER: NCT03554083.
Additional Links: PMID-40234093
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40234093,
year = {2025},
author = {Block, MS and Nelson, GD and Chen, J and Johnson, S and Yang, L and Flotte, TJ and Grewal, EP and McWilliams, RR and Kottschade, LA and Domingo-Musibay, E and Markovic, SN and Dimou, A and Montane, HN and Piltin, MA and Price, DL and Khariwala, SS and Hui, JYC and Erskine, CL and Strand, CA and Zahrieh, D and Dong, H and Hieken, TJ},
title = {Neoadjuvant cobimetinib and atezolizumab with or without vemurafenib for stage III melanoma: outcomes and the impact of the microbiome from the NeoACTIVATE trial.},
journal = {Journal for immunotherapy of cancer},
volume = {13},
number = {4},
pages = {},
doi = {10.1136/jitc-2025-011706},
pmid = {40234093},
issn = {2051-1426},
mesh = {Humans ; *Melanoma/drug therapy/pathology/mortality ; Female ; Male ; *Azetidines/therapeutic use/pharmacology ; *Antibodies, Monoclonal, Humanized/pharmacology/therapeutic use ; Middle Aged ; *Antineoplastic Combined Chemotherapy Protocols/therapeutic use/pharmacology ; *Neoadjuvant Therapy/methods ; *Piperidines/pharmacology/therapeutic use ; *Vemurafenib/pharmacology/therapeutic use ; Aged ; Neoplasm Staging ; Adult ; Gastrointestinal Microbiome ; Treatment Outcome ; *Skin Neoplasms/drug therapy ; },
abstract = {BACKGROUND: Neoadjuvant treatment has become standard for patients with high-risk operable stage III melanoma, but the optimal regimen is unknown. Targeted therapy approaches yield high pathological response rates, while immunotherapy regimens show favorable recurrence-free survival (RFS). NeoACTIVATE was designed to address whether a neoadjuvant combination of both targeted therapy and immunotherapy might leverage the benefits of each.
METHODS: We tested neoadjuvant treatment with 12 weeks of vemurafenib, cobimetinib, and atezolizumab for patients with BRAF-mutated (BRAFm) melanoma (cohort A) and cobimetinib and atezolizumab for patients with BRAF-wild-type (BRAFwt) melanoma (cohort B), regimens which we have shown generate a substantial major pathological response. After therapeutic lymph node dissection, patients received 24 weeks of adjuvant atezolizumab. Here, we report survival outcomes and their association with biomarkers assayed among the gut microbiome and peripheral blood immune subsets.
RESULTS: With 49 months median follow-up, the median RFS was not reached for cohort A and was 40.8 months for cohort B. At 24 months after operation, 2 of 14 cohort A patients and 4 of 13 cohort B patients had experienced distant relapse. Key findings from correlative analyses included diversity, taxonomic and functional metagenomic gut microbiome signals associated with distant metastasis-free survival at 2 years. Notably, we observed a strong correlation between low microbial arginine biosynthesis (required for T-cell activation and effector function) and early distant recurrence (p=0.0005), which correlated with taxonomic differential abundance findings. Peripheral blood immune monitoring revealed increased double-positive (CD4+CD8+) T cells in patients with early recurrence.
CONCLUSIONS: Neoadjuvant treatment with cobimetinib and atezolizumab±vemurafenib was associated with a low rate of distant metastasis in patients with high-risk stage III melanoma. Freedom from early distant metastasis was highly associated with taxonomic differences in gut microbiome structure and with functional pathway alterations known to modulate T cell immunity. Identification of predictive biomarkers will permit optimization of neoadjuvant therapy regimens for individual patients.
TRIAL REGISTRATION NUMBER: NCT03554083.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Melanoma/drug therapy/pathology/mortality
Female
Male
*Azetidines/therapeutic use/pharmacology
*Antibodies, Monoclonal, Humanized/pharmacology/therapeutic use
Middle Aged
*Antineoplastic Combined Chemotherapy Protocols/therapeutic use/pharmacology
*Neoadjuvant Therapy/methods
*Piperidines/pharmacology/therapeutic use
*Vemurafenib/pharmacology/therapeutic use
Aged
Neoplasm Staging
Adult
Gastrointestinal Microbiome
Treatment Outcome
*Skin Neoplasms/drug therapy
RevDate: 2025-04-15
CmpDate: 2025-04-15
Metagenomic interrogation of urban Superfund site reveals antimicrobial resistance reservoir and bioremediation potential.
Journal of applied microbiology, 136(4):.
AIMS: We investigate the bioremediation potential of the microbiome of the Gowanus Canal, a contaminated waterway in Brooklyn, NY, USA, designated a Superfund site by the US Environmental Protection Agency due to high concentrations of contaminants, including polychlorinated biphenyls, petrochemicals, and heavy metals.
METHODS AND RESULTS: We present a metagenomic analysis of the Gowanus Canal sediment, consisting of a longitudinal study of surface sediment and a depth-based study of sediment core samples. We demonstrate that the resident microbiome includes 455 species, including extremophiles across a range of saltwater and freshwater species, which collectively encode 64 metabolic pathways related to organic contaminant degradation and 1171 genes related to heavy metal utilization and detoxification. Furthermore, our genetic screening reveals an environmental reservoir of antimicrobial resistance markers falling within 8 different classes of resistance, as well as de-novo characterization of 2319 biosynthetic gene clusters and diverse groups of secondary metabolites with biomining potential.
CONCLUSION: The microbiome of the Gowanus Canal is a biotechnological resource of novel metabolic functions that could aid in efforts for bioremediation, AMR reservoir mapping, and heavy metal mitigation.
Additional Links: PMID-40233938
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40233938,
year = {2025},
author = {Kolokotronis, SO and Bhattacharya, C and Panja, R and Quate, I and Seibert, M and Jorgensen, E and Mason, CE and Hénaff, EM},
title = {Metagenomic interrogation of urban Superfund site reveals antimicrobial resistance reservoir and bioremediation potential.},
journal = {Journal of applied microbiology},
volume = {136},
number = {4},
pages = {},
doi = {10.1093/jambio/lxaf076},
pmid = {40233938},
issn = {1365-2672},
support = {80NSSC24K0728/NASA/NASA/United States ; R01AI125416/NH/NIH HHS/United States ; 1758800//National Science Foundation/ ; },
mesh = {Biodegradation, Environmental ; Metagenomics ; *Microbiota/genetics ; Metals, Heavy/metabolism ; *Geologic Sediments/microbiology ; *Bacteria/genetics/metabolism/drug effects/isolation & purification/classification ; Water Pollutants, Chemical/metabolism ; Polychlorinated Biphenyls/metabolism ; *Drug Resistance, Bacterial/genetics ; Metagenome ; },
abstract = {AIMS: We investigate the bioremediation potential of the microbiome of the Gowanus Canal, a contaminated waterway in Brooklyn, NY, USA, designated a Superfund site by the US Environmental Protection Agency due to high concentrations of contaminants, including polychlorinated biphenyls, petrochemicals, and heavy metals.
METHODS AND RESULTS: We present a metagenomic analysis of the Gowanus Canal sediment, consisting of a longitudinal study of surface sediment and a depth-based study of sediment core samples. We demonstrate that the resident microbiome includes 455 species, including extremophiles across a range of saltwater and freshwater species, which collectively encode 64 metabolic pathways related to organic contaminant degradation and 1171 genes related to heavy metal utilization and detoxification. Furthermore, our genetic screening reveals an environmental reservoir of antimicrobial resistance markers falling within 8 different classes of resistance, as well as de-novo characterization of 2319 biosynthetic gene clusters and diverse groups of secondary metabolites with biomining potential.
CONCLUSION: The microbiome of the Gowanus Canal is a biotechnological resource of novel metabolic functions that could aid in efforts for bioremediation, AMR reservoir mapping, and heavy metal mitigation.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Biodegradation, Environmental
Metagenomics
*Microbiota/genetics
Metals, Heavy/metabolism
*Geologic Sediments/microbiology
*Bacteria/genetics/metabolism/drug effects/isolation & purification/classification
Water Pollutants, Chemical/metabolism
Polychlorinated Biphenyls/metabolism
*Drug Resistance, Bacterial/genetics
Metagenome
RevDate: 2025-04-15
CmpDate: 2025-04-15
Identifying Potential Geochemical and Microbial Impacts of Hydrogen Storage in a Deep Saline Aquifer.
Environmental microbiology reports, 17(2):e70076.
Hydrogen is valuable commodity and a promising energy carrier for variable energy production. Storage of hydrogen may occur through injection of hydrogen or a hydrogen/methane gas blend in subsurface reservoirs. However, the geochemical and biological reactions that may impact the stored hydrogen are not yet understood. Therefore, we collected samples from a deep storage aquifer located in the St. Peter Formation in southern Illinois. The reservoir material was primarily quartz with sulphur and iron deposits, while the major constituents of the fluid were chloride and sulphate. 16S rRNA gene amplicon sequencing revealed a low biomass microbial community that contained no obvious hydrogen-consuming bacteria. Next, we enriched a field sample to increase the biomass and completed a metagenomic analysis, finding a low number of genes present that are associated with hydrogen consumption. Then, we completed a series of reactor experiments under reservoir conditions with 15% H2/85% CH4 gas simulating a short-term hydrogen storage, high withdrawal scenario. We found minimal changes in the geochemistry or microbiology for the reactor experiments. This work suggests that short-term storage may be highly successful, although significant additional work needs to be completed in order to accurately evaluate the risks associated with long-term hydrogen storage scenarios. It is essential we continue to expand our understanding of the dynamics present in saline aquifers and provide new insights into how hydrogen storage may impact underground geological storage environments.
Additional Links: PMID-40233768
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40233768,
year = {2025},
author = {Tinker, KA and Anthony, W and Brandi, M and Flett, S and Bagwell, CE and Smallwood, C and Davis, R and Gulliver, D},
title = {Identifying Potential Geochemical and Microbial Impacts of Hydrogen Storage in a Deep Saline Aquifer.},
journal = {Environmental microbiology reports},
volume = {17},
number = {2},
pages = {e70076},
doi = {10.1111/1758-2229.70076},
pmid = {40233768},
issn = {1758-2229},
support = {//U.S. Department of Energy's (DOE) Office of Fossil Energy and Carbon Management's Hydrogen with Carbon Management Program and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center's Natural Gas Decarbonization and Hydrogen Technologies Multi-Year Research Plan/ ; },
mesh = {*Hydrogen/metabolism ; *Groundwater/microbiology/chemistry ; RNA, Ribosomal, 16S/genetics ; *Bacteria/genetics/metabolism/classification/isolation & purification ; Illinois ; Methane/metabolism ; Microbiota ; Metagenomics ; },
abstract = {Hydrogen is valuable commodity and a promising energy carrier for variable energy production. Storage of hydrogen may occur through injection of hydrogen or a hydrogen/methane gas blend in subsurface reservoirs. However, the geochemical and biological reactions that may impact the stored hydrogen are not yet understood. Therefore, we collected samples from a deep storage aquifer located in the St. Peter Formation in southern Illinois. The reservoir material was primarily quartz with sulphur and iron deposits, while the major constituents of the fluid were chloride and sulphate. 16S rRNA gene amplicon sequencing revealed a low biomass microbial community that contained no obvious hydrogen-consuming bacteria. Next, we enriched a field sample to increase the biomass and completed a metagenomic analysis, finding a low number of genes present that are associated with hydrogen consumption. Then, we completed a series of reactor experiments under reservoir conditions with 15% H2/85% CH4 gas simulating a short-term hydrogen storage, high withdrawal scenario. We found minimal changes in the geochemistry or microbiology for the reactor experiments. This work suggests that short-term storage may be highly successful, although significant additional work needs to be completed in order to accurately evaluate the risks associated with long-term hydrogen storage scenarios. It is essential we continue to expand our understanding of the dynamics present in saline aquifers and provide new insights into how hydrogen storage may impact underground geological storage environments.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Hydrogen/metabolism
*Groundwater/microbiology/chemistry
RNA, Ribosomal, 16S/genetics
*Bacteria/genetics/metabolism/classification/isolation & purification
Illinois
Methane/metabolism
Microbiota
Metagenomics
RevDate: 2025-04-15
CmpDate: 2025-04-15
Study protocol: Fecal Microbiota Transplant combined with Atezolizumab/Bevacizumab in Patients with Hepatocellular Carcinoma who failed to achieve or maintain objective response to Atezolizumab/Bevacizumab - the FAB-HCC pilot study.
PloS one, 20(4):e0321189 pii:PONE-D-24-41672.
BACKGROUND: The gut microbiota is often altered in chronic liver diseases and hepatocellular carcinoma (HCC), and increasing evidence suggests that it may influence response to cancer immunotherapy. Strategies to modulate the gut microbiome (i.e., fecal microbiota transplant (FMT)) may help to improve efficacy of immune checkpoint inhibitors (ICIs) or even overcome resistance to ICIs. Here, we describe the design and rationale of FAB-HCC, a single-center, single-arm, phase II pilot study to assess safety, feasibility, and efficacy of FMT from patients with HCC who responded to PD-(L)1-based immunotherapy or from healthy donors to patients with HCC who failed to achieve or maintain a response to atezolizumab plus bevacizumab.
METHODS: In this single-center, single-arm, phase II pilot study (ClinicalTrials.gov identifier: NCT05750030), we plan to include 12 patients with advanced HCC who failed to achieve or maintain a response to atezolizumab/bevacizumab. Patients will receive a single FMT via colonoscopy from donors with HCC who responded to PD-(L)1-based immunotherapy or from healthy individuals, followed by atezolizumab/bevacizumab every 3 weeks. The primary endpoint is safety, measured by incidence and severity of treatment-related adverse events. The main secondary endpoint is efficacy, as assessed by best radiological response according to RECISTv1.1 and mRECIST. Additional exploratory endpoints include data on the effect of FMT on recipient gut microbiota, as well as metagenomic analysis of stool samples, analyses of circulating immune cells and serum and stool proteomic, metabolomic and lipidomic signatures.
DISCUSSION: The results of this study will help to define the potential of FMT as add-on intervention in the systemic treatment of advanced HCC, with the potential to improve efficacy of immunotherapy or even overcome resistance.
TRIAL REGISTRATION: EudraCT Number: 2022-000234-42 Clinical trial registry & ID: ClinicalTrials.gov identifier: NCT05750030 (Registration date: 16.01.2023).
Additional Links: PMID-40233040
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40233040,
year = {2025},
author = {Pomej, K and Frick, A and Scheiner, B and Balcar, L and Pajancic, L and Klotz, A and Kreuter, A and Lampichler, K and Regnat, K and Zinober, K and Trauner, M and Tamandl, D and Gasche, C and Pinter, M},
title = {Study protocol: Fecal Microbiota Transplant combined with Atezolizumab/Bevacizumab in Patients with Hepatocellular Carcinoma who failed to achieve or maintain objective response to Atezolizumab/Bevacizumab - the FAB-HCC pilot study.},
journal = {PloS one},
volume = {20},
number = {4},
pages = {e0321189},
doi = {10.1371/journal.pone.0321189},
pmid = {40233040},
issn = {1932-6203},
mesh = {Humans ; *Liver Neoplasms/therapy/drug therapy ; *Carcinoma, Hepatocellular/therapy/drug therapy ; Pilot Projects ; *Fecal Microbiota Transplantation/methods ; *Bevacizumab/therapeutic use/administration & dosage ; *Antibodies, Monoclonal, Humanized/therapeutic use/administration & dosage ; Male ; Female ; Gastrointestinal Microbiome ; Middle Aged ; *Antineoplastic Combined Chemotherapy Protocols/therapeutic use ; Aged ; },
abstract = {BACKGROUND: The gut microbiota is often altered in chronic liver diseases and hepatocellular carcinoma (HCC), and increasing evidence suggests that it may influence response to cancer immunotherapy. Strategies to modulate the gut microbiome (i.e., fecal microbiota transplant (FMT)) may help to improve efficacy of immune checkpoint inhibitors (ICIs) or even overcome resistance to ICIs. Here, we describe the design and rationale of FAB-HCC, a single-center, single-arm, phase II pilot study to assess safety, feasibility, and efficacy of FMT from patients with HCC who responded to PD-(L)1-based immunotherapy or from healthy donors to patients with HCC who failed to achieve or maintain a response to atezolizumab plus bevacizumab.
METHODS: In this single-center, single-arm, phase II pilot study (ClinicalTrials.gov identifier: NCT05750030), we plan to include 12 patients with advanced HCC who failed to achieve or maintain a response to atezolizumab/bevacizumab. Patients will receive a single FMT via colonoscopy from donors with HCC who responded to PD-(L)1-based immunotherapy or from healthy individuals, followed by atezolizumab/bevacizumab every 3 weeks. The primary endpoint is safety, measured by incidence and severity of treatment-related adverse events. The main secondary endpoint is efficacy, as assessed by best radiological response according to RECISTv1.1 and mRECIST. Additional exploratory endpoints include data on the effect of FMT on recipient gut microbiota, as well as metagenomic analysis of stool samples, analyses of circulating immune cells and serum and stool proteomic, metabolomic and lipidomic signatures.
DISCUSSION: The results of this study will help to define the potential of FMT as add-on intervention in the systemic treatment of advanced HCC, with the potential to improve efficacy of immunotherapy or even overcome resistance.
TRIAL REGISTRATION: EudraCT Number: 2022-000234-42 Clinical trial registry & ID: ClinicalTrials.gov identifier: NCT05750030 (Registration date: 16.01.2023).},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Liver Neoplasms/therapy/drug therapy
*Carcinoma, Hepatocellular/therapy/drug therapy
Pilot Projects
*Fecal Microbiota Transplantation/methods
*Bevacizumab/therapeutic use/administration & dosage
*Antibodies, Monoclonal, Humanized/therapeutic use/administration & dosage
Male
Female
Gastrointestinal Microbiome
Middle Aged
*Antineoplastic Combined Chemotherapy Protocols/therapeutic use
Aged
RevDate: 2025-04-15
CmpDate: 2025-04-15
Consensus approach to differential abundance analysis detects few differences in the oral microbiome of pregnant women due to pre-existing type 2 diabetes mellitus.
Microbial genomics, 11(4):.
Oral microbiome dysbiosis has been proposed as a potential contributing factor to rising rates of diabetes in pregnancy, with oral health previously associated with an increased risk of numerous chronic diseases and complications in pregnancy, including gestational diabetes mellitus (GDM). However, whilst most studies examining the relationship between GDM and the oral microbiome identify significant differences, these differences are highly variable between studies. Additionally, no previous research has examined the oral microbiome of women with pre-existing type 2 diabetes mellitus (T2DM), which has greater risks of complications to both mother and baby. In this study, we compared the oral microbiome of 11 pregnant women with pre-existing T2DM with 28 pregnant normoglycaemic controls. We used shotgun metagenomic sequencing to examine buccal swab and saliva rinse samples at two time points between 26 and 38 weeks of gestation. To reduce variation caused by the choice of differential abundance analysis tool, we employed a consensus approach to identify differential taxa and pathways due to diabetes status. Differences were identified at the late time point only. In swab samples, there was increased Flavobacteriaceae, Capnocytophaga, Capnocytophaga gingivalis SGB2479, Capnocytophaga leadbetteri SGB2492 and Neisseria elongata SGB9447 abundance in T2DM as well as increased Shannon diversity and richness. In rinse samples, there was an increased abundance of Haemophilus, Pasteurellaceae, Pasteurellales and Proteobacteria. In contrast to studies of the oral microbiome in T2DM or GDM that use a single differential abundance analysis tool, our consensus approach identified few differences between pregnant women with and without T2DM.
Additional Links: PMID-40232948
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40232948,
year = {2025},
author = {Leech, SM and Barrett, HL and Dorey, ES and Mullins, T and Laurie, J and Nitert, MD},
title = {Consensus approach to differential abundance analysis detects few differences in the oral microbiome of pregnant women due to pre-existing type 2 diabetes mellitus.},
journal = {Microbial genomics},
volume = {11},
number = {4},
pages = {},
doi = {10.1099/mgen.0.001385},
pmid = {40232948},
issn = {2057-5858},
mesh = {Humans ; Female ; Pregnancy ; *Diabetes Mellitus, Type 2/microbiology/complications ; *Microbiota/genetics ; Adult ; *Diabetes, Gestational/microbiology ; Saliva/microbiology ; *Mouth/microbiology ; Metagenomics/methods ; Dysbiosis/microbiology ; *Bacteria/classification/genetics/isolation & purification ; },
abstract = {Oral microbiome dysbiosis has been proposed as a potential contributing factor to rising rates of diabetes in pregnancy, with oral health previously associated with an increased risk of numerous chronic diseases and complications in pregnancy, including gestational diabetes mellitus (GDM). However, whilst most studies examining the relationship between GDM and the oral microbiome identify significant differences, these differences are highly variable between studies. Additionally, no previous research has examined the oral microbiome of women with pre-existing type 2 diabetes mellitus (T2DM), which has greater risks of complications to both mother and baby. In this study, we compared the oral microbiome of 11 pregnant women with pre-existing T2DM with 28 pregnant normoglycaemic controls. We used shotgun metagenomic sequencing to examine buccal swab and saliva rinse samples at two time points between 26 and 38 weeks of gestation. To reduce variation caused by the choice of differential abundance analysis tool, we employed a consensus approach to identify differential taxa and pathways due to diabetes status. Differences were identified at the late time point only. In swab samples, there was increased Flavobacteriaceae, Capnocytophaga, Capnocytophaga gingivalis SGB2479, Capnocytophaga leadbetteri SGB2492 and Neisseria elongata SGB9447 abundance in T2DM as well as increased Shannon diversity and richness. In rinse samples, there was an increased abundance of Haemophilus, Pasteurellaceae, Pasteurellales and Proteobacteria. In contrast to studies of the oral microbiome in T2DM or GDM that use a single differential abundance analysis tool, our consensus approach identified few differences between pregnant women with and without T2DM.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Female
Pregnancy
*Diabetes Mellitus, Type 2/microbiology/complications
*Microbiota/genetics
Adult
*Diabetes, Gestational/microbiology
Saliva/microbiology
*Mouth/microbiology
Metagenomics/methods
Dysbiosis/microbiology
*Bacteria/classification/genetics/isolation & purification
RevDate: 2025-04-14
CmpDate: 2025-04-14
Metagenomic source tracking after microbiota transplant therapy.
Gut microbes, 17(1):2487840.
Reliable engraftment assessment of donor microbial communities and individual strains is an essential component of characterizing the pharmacokinetics of microbiota transplant therapies (MTTs). Recent methods for measuring donor engraftment use whole-genome sequencing and reference databases or metagenome-assembled genomes (MAGs) to track individual bacterial strains but lack the ability to disambiguate DNA that matches both donor and patient microbiota. Here, we describe a new, cost-efficient analytic pipeline, MAGEnTa, which compares post-MTT samples to a database comprised MAGs derived directly from donor and pre-treatment metagenomic data, without relying on an external database. The pipeline uses Bayesian statistics to determine the likely sources of ambiguous reads that align with both the donor and pre-treatment samples. MAGEnTa recovers engrafted strains with minimal type II error in a simulated dataset and is robust to shallow sequencing depths in a downsampled dataset. Applying MAGEnTa to a dataset from a recent MTT clinical trial for ulcerative colitis, we found the results to be consistent with 16S rRNA gene SourceTracker analysis but with added MAG-level specificity. MAGEnTa is a powerful tool to study community and strain engraftment dynamics in the development of MTT-based treatments that can be integrated into frameworks for functional and taxonomic analysis.
Additional Links: PMID-40229213
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40229213,
year = {2025},
author = {Hoops, SL and Moutsoglou, D and Vaughn, BP and Khoruts, A and Knights, D},
title = {Metagenomic source tracking after microbiota transplant therapy.},
journal = {Gut microbes},
volume = {17},
number = {1},
pages = {2487840},
doi = {10.1080/19490976.2025.2487840},
pmid = {40229213},
issn = {1949-0984},
mesh = {Humans ; *Metagenomics/methods ; *Fecal Microbiota Transplantation ; *Gastrointestinal Microbiome/genetics ; Colitis, Ulcerative/therapy/microbiology ; *Bacteria/genetics/classification/isolation & purification ; RNA, Ribosomal, 16S/genetics ; *Metagenome ; Bayes Theorem ; Feces/microbiology ; },
abstract = {Reliable engraftment assessment of donor microbial communities and individual strains is an essential component of characterizing the pharmacokinetics of microbiota transplant therapies (MTTs). Recent methods for measuring donor engraftment use whole-genome sequencing and reference databases or metagenome-assembled genomes (MAGs) to track individual bacterial strains but lack the ability to disambiguate DNA that matches both donor and patient microbiota. Here, we describe a new, cost-efficient analytic pipeline, MAGEnTa, which compares post-MTT samples to a database comprised MAGs derived directly from donor and pre-treatment metagenomic data, without relying on an external database. The pipeline uses Bayesian statistics to determine the likely sources of ambiguous reads that align with both the donor and pre-treatment samples. MAGEnTa recovers engrafted strains with minimal type II error in a simulated dataset and is robust to shallow sequencing depths in a downsampled dataset. Applying MAGEnTa to a dataset from a recent MTT clinical trial for ulcerative colitis, we found the results to be consistent with 16S rRNA gene SourceTracker analysis but with added MAG-level specificity. MAGEnTa is a powerful tool to study community and strain engraftment dynamics in the development of MTT-based treatments that can be integrated into frameworks for functional and taxonomic analysis.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Metagenomics/methods
*Fecal Microbiota Transplantation
*Gastrointestinal Microbiome/genetics
Colitis, Ulcerative/therapy/microbiology
*Bacteria/genetics/classification/isolation & purification
RNA, Ribosomal, 16S/genetics
*Metagenome
Bayes Theorem
Feces/microbiology
RevDate: 2025-04-15
CmpDate: 2025-04-15
Revealing microbial functionalities and ecological roles in Rajpardi lignite mine: insights from metagenomics analysis.
Letters in applied microbiology, 78(4):.
The present study employs a metagenomics approach to evaluate microbial communities' ecological functions and potential within the Rajpardi lignite mine of Gujarat, India. Through whole genome shotgun sequencing on the Illumina Miseq platform, we obtained 10 071 318 sequences, which unveiled a diverse and abundant microbial community primarily composed of Proteobacteria, Acidobacteria, and Nitrospirae. Comprehensive taxonomic profiling and gene prediction was carried out using the SqueezeMeta pipline, which highlighted significant contributions to carbohydrate, amino acid, and energy metabolism. The detection of antimicrobial resistance and stress resistance genes, such as blaTEM and merA, suggests that these microbes possess the ability to adapt to harsh environmental conditions. Genome binning revealed species such as Acidiphilum sp. 20-67-58, emphasizing the nature of these communities as they adapted to an acidic environment. This finding highlights the crucial role of microbes in biogeochemical cycles, emphasizing their potential in bioremediation, pollutant degradation, and ecosystem restoration.
Additional Links: PMID-40156579
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40156579,
year = {2025},
author = {Sanghani, A and Antaliya, K and Patel, R and Dave, S and Tipre, D},
title = {Revealing microbial functionalities and ecological roles in Rajpardi lignite mine: insights from metagenomics analysis.},
journal = {Letters in applied microbiology},
volume = {78},
number = {4},
pages = {},
doi = {10.1093/lambio/ovaf048},
pmid = {40156579},
issn = {1472-765X},
mesh = {*Metagenomics ; India ; *Bacteria/genetics/classification/isolation & purification/metabolism ; Mining ; *Soil Microbiology ; Phylogeny ; *Microbiota ; },
abstract = {The present study employs a metagenomics approach to evaluate microbial communities' ecological functions and potential within the Rajpardi lignite mine of Gujarat, India. Through whole genome shotgun sequencing on the Illumina Miseq platform, we obtained 10 071 318 sequences, which unveiled a diverse and abundant microbial community primarily composed of Proteobacteria, Acidobacteria, and Nitrospirae. Comprehensive taxonomic profiling and gene prediction was carried out using the SqueezeMeta pipline, which highlighted significant contributions to carbohydrate, amino acid, and energy metabolism. The detection of antimicrobial resistance and stress resistance genes, such as blaTEM and merA, suggests that these microbes possess the ability to adapt to harsh environmental conditions. Genome binning revealed species such as Acidiphilum sp. 20-67-58, emphasizing the nature of these communities as they adapted to an acidic environment. This finding highlights the crucial role of microbes in biogeochemical cycles, emphasizing their potential in bioremediation, pollutant degradation, and ecosystem restoration.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Metagenomics
India
*Bacteria/genetics/classification/isolation & purification/metabolism
Mining
*Soil Microbiology
Phylogeny
*Microbiota
RevDate: 2025-04-15
CmpDate: 2025-04-15
Microbial degradation of polypropylene microplastics and concomitant polyhydroxybutyrate production: An integrated bioremediation approach with metagenomic insights.
Journal of hazardous materials, 490:137806.
The persistence of plastics, particularly polypropylene (PP), and their conversion into microplastics (MPs), specifically PP-MPs, have emerged as serious ecological threats to soil and aquatic environments. In the present study, we aimed to isolate a microbial consortium capable of degrading PP-MPs. The results revealed that three microbial consortia (CPP-KKU1, CPP-KKU2, and CPP-KKU3) exhibited the ability to degrade PP-MPs, achieving weight losses ranging from 11.6 ± 0.2 % to 17.8 ± 0.5 % after 30 days. Fourier transform infrared (FTIR) spectroscopy analysis confirmed the degradation through oxidation, as evidenced by the presence of new functional groups (-OH and -C=O). In particular, CPP-KKU3 showed the highest degradation efficiency, with scanning electron microscopy (SEM) analysis revealing surface cracking after treatment. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis identified various intermediate compounds, including heterocyclic aromatic compounds, phenyl groups, methylthio derivatives, and ethoxycarbonyl derivatives, indicating complex biochemical processes that were likely mediated by microbial enzymes. Furthermore, polyhydroxybutyrate (PHB) production by these consortia was also investigated. The result showed that both CPP-KKU2 and CPP-KKU3 successfully produced PHB, with CPP-KKU3 demonstrating superior performance in terms of PP-MP degradation and PHB production. Metagenomic analysis of CPP-KKU3 revealed abundant carbohydrate-active enzymes (CAZymes), particularly glycosyl transferases and glycoside hydrolases, which are associated with MP digestion. This study presents a promising bioremediation approach that addresses plastic waste degradation and sustainable bioplastic production, offering a potential solution for environmental plastic pollution.
Additional Links: PMID-40056517
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40056517,
year = {2025},
author = {Choonut, A and Wongfaed, N and Wongthong, L and Poolpol, A and Chaikitkaew, S and Sittijunda, S and Reungsang, A},
title = {Microbial degradation of polypropylene microplastics and concomitant polyhydroxybutyrate production: An integrated bioremediation approach with metagenomic insights.},
journal = {Journal of hazardous materials},
volume = {490},
number = {},
pages = {137806},
doi = {10.1016/j.jhazmat.2025.137806},
pmid = {40056517},
issn = {1873-3336},
mesh = {*Polypropylenes/metabolism ; Biodegradation, Environmental ; *Microplastics/metabolism ; *Hydroxybutyrates/metabolism ; Microbial Consortia ; Metagenomics ; Bacteria/metabolism/genetics ; *Polyesters/metabolism ; Polyhydroxybutyrates ; },
abstract = {The persistence of plastics, particularly polypropylene (PP), and their conversion into microplastics (MPs), specifically PP-MPs, have emerged as serious ecological threats to soil and aquatic environments. In the present study, we aimed to isolate a microbial consortium capable of degrading PP-MPs. The results revealed that three microbial consortia (CPP-KKU1, CPP-KKU2, and CPP-KKU3) exhibited the ability to degrade PP-MPs, achieving weight losses ranging from 11.6 ± 0.2 % to 17.8 ± 0.5 % after 30 days. Fourier transform infrared (FTIR) spectroscopy analysis confirmed the degradation through oxidation, as evidenced by the presence of new functional groups (-OH and -C=O). In particular, CPP-KKU3 showed the highest degradation efficiency, with scanning electron microscopy (SEM) analysis revealing surface cracking after treatment. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis identified various intermediate compounds, including heterocyclic aromatic compounds, phenyl groups, methylthio derivatives, and ethoxycarbonyl derivatives, indicating complex biochemical processes that were likely mediated by microbial enzymes. Furthermore, polyhydroxybutyrate (PHB) production by these consortia was also investigated. The result showed that both CPP-KKU2 and CPP-KKU3 successfully produced PHB, with CPP-KKU3 demonstrating superior performance in terms of PP-MP degradation and PHB production. Metagenomic analysis of CPP-KKU3 revealed abundant carbohydrate-active enzymes (CAZymes), particularly glycosyl transferases and glycoside hydrolases, which are associated with MP digestion. This study presents a promising bioremediation approach that addresses plastic waste degradation and sustainable bioplastic production, offering a potential solution for environmental plastic pollution.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Polypropylenes/metabolism
Biodegradation, Environmental
*Microplastics/metabolism
*Hydroxybutyrates/metabolism
Microbial Consortia
Metagenomics
Bacteria/metabolism/genetics
*Polyesters/metabolism
Polyhydroxybutyrates
RevDate: 2025-04-15
CmpDate: 2025-04-15
Characteristics of microplastics in typical poultry farms and the association of environment microplastics colonized-microbiota, waterfowl gut microbiota, and antibiotic resistance genes.
Journal of hazardous materials, 490:137808.
Microplastics (MPs) pollution is a growing global environmental concern. MPs serve as ecological niches for microbial communities, which may accelerate the spread of antibiotic resistance genes (ARGs), posing risks to the breeding industry. While studies on MPs in aquatic organisms are common, research on farmed poultry is limited. This study investigates MPs in poultry farm environments and waterfowl intestines for the first time. MPs were isolated via density separation and analyzed for characterization in soil, pond water, and waterfowl intestines. Metagenomics was used to investigate the association between environment MPs colonized-microbiota and waterfowl gut microbiota. Our findings reveal that MPs are abundant in soil (6.75 ± 2.78 items/g d.w.), pond water (0.94 ± 0.28 items/g w.w.), and poultry intestines (45.35 ± 19.52 items/g w.w.), primarily appearing as fragmented particles sized 20-50 μm. MPs abundance in intestines correlates with environmental levels. Colonized-microbiota on MPs are linked to poultry intestinal microbiota, with greater diversity and microbial functions. Network analysis reveals that Corynebacterium plays a key role in MPs and poultry intestinal. Polymyxin resistance exhibits high clustering. Procrustes analysis reveals correlations between MPs, bacteria, and ARGs in the farming environment. Overall, MPs in poultry farms may facilitate pathogen and ARGs transmission, posing risks to animal gut health.
Additional Links: PMID-40043390
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40043390,
year = {2025},
author = {Li, F and Zeng, Z and Wu, Y and Wang, Y and Shen, L and Huang, X and Wang, X and Sun, Y},
title = {Characteristics of microplastics in typical poultry farms and the association of environment microplastics colonized-microbiota, waterfowl gut microbiota, and antibiotic resistance genes.},
journal = {Journal of hazardous materials},
volume = {490},
number = {},
pages = {137808},
doi = {10.1016/j.jhazmat.2025.137808},
pmid = {40043390},
issn = {1873-3336},
mesh = {Animals ; *Gastrointestinal Microbiome/drug effects/genetics ; *Microplastics/analysis/toxicity ; *Drug Resistance, Microbial/genetics ; Poultry ; Farms ; *Water Pollutants, Chemical/analysis ; Environmental Monitoring ; },
abstract = {Microplastics (MPs) pollution is a growing global environmental concern. MPs serve as ecological niches for microbial communities, which may accelerate the spread of antibiotic resistance genes (ARGs), posing risks to the breeding industry. While studies on MPs in aquatic organisms are common, research on farmed poultry is limited. This study investigates MPs in poultry farm environments and waterfowl intestines for the first time. MPs were isolated via density separation and analyzed for characterization in soil, pond water, and waterfowl intestines. Metagenomics was used to investigate the association between environment MPs colonized-microbiota and waterfowl gut microbiota. Our findings reveal that MPs are abundant in soil (6.75 ± 2.78 items/g d.w.), pond water (0.94 ± 0.28 items/g w.w.), and poultry intestines (45.35 ± 19.52 items/g w.w.), primarily appearing as fragmented particles sized 20-50 μm. MPs abundance in intestines correlates with environmental levels. Colonized-microbiota on MPs are linked to poultry intestinal microbiota, with greater diversity and microbial functions. Network analysis reveals that Corynebacterium plays a key role in MPs and poultry intestinal. Polymyxin resistance exhibits high clustering. Procrustes analysis reveals correlations between MPs, bacteria, and ARGs in the farming environment. Overall, MPs in poultry farms may facilitate pathogen and ARGs transmission, posing risks to animal gut health.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/drug effects/genetics
*Microplastics/analysis/toxicity
*Drug Resistance, Microbial/genetics
Poultry
Farms
*Water Pollutants, Chemical/analysis
Environmental Monitoring
RevDate: 2025-04-15
CmpDate: 2025-04-15
Mycotoxin and microbiome profiling for aflatoxin control in the Korean traditional fermented soybean paste Doenjang.
Journal of hazardous materials, 490:137777.
Mycotoxin contamination is an important concern in producing traditional fermented soybean paste, though no effective control strategy has been developed. This study investigated the mycotoxin profiles of the intermediate (fermented soybean brick, known as "Meju" in South Korea) and final soybean paste products ("Doenjang") to identify major contaminants and describe microbial diversity with the mycotoxins. Profiling of 323 Meju and Doenjang samples revealed severe aflatoxin (AF) contamination. Metagenomic analysis revealed that the species richness and phylogenetic diversity were significantly higher in AF-free than in AF-contaminated Meju and Doenjang. Certain Aspergillus and Penicillium species were more abundant in AF-free than in AF-contaminated Meju and Doenjang. To control AF levels, we developed a novel mycotoxin-reduction approach that preserves the indigenous microbiome by backslopping fermentation of Meju in both Aspergillus-dominant and Penicillium-dominant modes. Both treatments reduced AF levels by > 95 % at a backslopping rate of > 2.5 %. Our results suggested that backslopping fermentation can effectively reduce AF contamination in traditional soybean fermentation, maintaining food safety standards and artisanal practices.
Additional Links: PMID-40024121
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40024121,
year = {2025},
author = {Woo, SY and Park, SB and Lee, SY and Sul, WJ and Chun, HS},
title = {Mycotoxin and microbiome profiling for aflatoxin control in the Korean traditional fermented soybean paste Doenjang.},
journal = {Journal of hazardous materials},
volume = {490},
number = {},
pages = {137777},
doi = {10.1016/j.jhazmat.2025.137777},
pmid = {40024121},
issn = {1873-3336},
mesh = {*Aflatoxins/analysis ; *Microbiota ; Republic of Korea ; Aspergillus/genetics/isolation & purification ; *Glycine max/microbiology ; Penicillium/genetics ; *Food Contamination/prevention & control/analysis ; *Soy Foods/analysis/microbiology ; Fermentation ; *Fermented Foods/microbiology/analysis ; Food Microbiology ; },
abstract = {Mycotoxin contamination is an important concern in producing traditional fermented soybean paste, though no effective control strategy has been developed. This study investigated the mycotoxin profiles of the intermediate (fermented soybean brick, known as "Meju" in South Korea) and final soybean paste products ("Doenjang") to identify major contaminants and describe microbial diversity with the mycotoxins. Profiling of 323 Meju and Doenjang samples revealed severe aflatoxin (AF) contamination. Metagenomic analysis revealed that the species richness and phylogenetic diversity were significantly higher in AF-free than in AF-contaminated Meju and Doenjang. Certain Aspergillus and Penicillium species were more abundant in AF-free than in AF-contaminated Meju and Doenjang. To control AF levels, we developed a novel mycotoxin-reduction approach that preserves the indigenous microbiome by backslopping fermentation of Meju in both Aspergillus-dominant and Penicillium-dominant modes. Both treatments reduced AF levels by > 95 % at a backslopping rate of > 2.5 %. Our results suggested that backslopping fermentation can effectively reduce AF contamination in traditional soybean fermentation, maintaining food safety standards and artisanal practices.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Aflatoxins/analysis
*Microbiota
Republic of Korea
Aspergillus/genetics/isolation & purification
*Glycine max/microbiology
Penicillium/genetics
*Food Contamination/prevention & control/analysis
*Soy Foods/analysis/microbiology
Fermentation
*Fermented Foods/microbiology/analysis
Food Microbiology
RevDate: 2025-04-15
CmpDate: 2025-04-15
Metagenomic insights into the inhibitory effect of phytochemical supplementation on antibiotic resistance genes and virulence factors in the rumen of transition dairy cows.
Journal of hazardous materials, 490:137717.
Antimicrobial resistance (AMR) is a major global health concern, with the rumen microbiota of dairy cows serving as an important reservoir for antibiotic resistance genes (ARGs) and virulence factors (VFs). This study explores the impact of dietary phytochemical supplementation on the rumen resistome and virulome of transition dairy cows using metagenomic sequencing. Naringin supplementation reduced the abundance of ARGs by up to 9.0 % and VFs by up to 7.2 % during the transition period, as indicated by metagenomic analysis (P < 0.05). Clinically high-risk ARGs, including those conferring resistance to beta-lactams (mecA), tetracyclines (tetM, tetO), and aminoglycosides (rmtF), were notably downregulated (P < 0.05). Virulence factors associated with adherence, secretion systems, and toxins were also significantly decreased (P < 0.05). Naringin altered the microbial community structure, particularly reducing the abundance of Proteobacteria, a key phylum harboring ARGs and VFs. Despite inducing increased ARG-VF network complexity, naringin supplementation promoted a less pathogenic microbiome with reduced resistance potential. These findings demonstrate the potential of naringin as a natural dietary strategy to mitigate AMR by reducing the risk of ARG and VF dissemination into the environment, while supporting rumen microbiota stability in transition dairy cows.
Additional Links: PMID-40020294
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40020294,
year = {2025},
author = {Zhao, Y and Li, L and Tan, J and Zhao, H and Wang, Y and Zhang, A and Jiang, L},
title = {Metagenomic insights into the inhibitory effect of phytochemical supplementation on antibiotic resistance genes and virulence factors in the rumen of transition dairy cows.},
journal = {Journal of hazardous materials},
volume = {490},
number = {},
pages = {137717},
doi = {10.1016/j.jhazmat.2025.137717},
pmid = {40020294},
issn = {1873-3336},
mesh = {Animals ; Cattle ; *Rumen/microbiology ; Metagenomics ; *Virulence Factors/genetics ; *Phytochemicals/pharmacology ; *Dietary Supplements ; *Drug Resistance, Microbial/genetics/drug effects ; Female ; *Flavanones/pharmacology ; Anti-Bacterial Agents/pharmacology ; *Drug Resistance, Bacterial/genetics ; Genes, Bacterial ; Microbiota/drug effects ; Gastrointestinal Microbiome/drug effects ; Bacteria/genetics/drug effects ; Animal Feed ; },
abstract = {Antimicrobial resistance (AMR) is a major global health concern, with the rumen microbiota of dairy cows serving as an important reservoir for antibiotic resistance genes (ARGs) and virulence factors (VFs). This study explores the impact of dietary phytochemical supplementation on the rumen resistome and virulome of transition dairy cows using metagenomic sequencing. Naringin supplementation reduced the abundance of ARGs by up to 9.0 % and VFs by up to 7.2 % during the transition period, as indicated by metagenomic analysis (P < 0.05). Clinically high-risk ARGs, including those conferring resistance to beta-lactams (mecA), tetracyclines (tetM, tetO), and aminoglycosides (rmtF), were notably downregulated (P < 0.05). Virulence factors associated with adherence, secretion systems, and toxins were also significantly decreased (P < 0.05). Naringin altered the microbial community structure, particularly reducing the abundance of Proteobacteria, a key phylum harboring ARGs and VFs. Despite inducing increased ARG-VF network complexity, naringin supplementation promoted a less pathogenic microbiome with reduced resistance potential. These findings demonstrate the potential of naringin as a natural dietary strategy to mitigate AMR by reducing the risk of ARG and VF dissemination into the environment, while supporting rumen microbiota stability in transition dairy cows.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
*Rumen/microbiology
Metagenomics
*Virulence Factors/genetics
*Phytochemicals/pharmacology
*Dietary Supplements
*Drug Resistance, Microbial/genetics/drug effects
Female
*Flavanones/pharmacology
Anti-Bacterial Agents/pharmacology
*Drug Resistance, Bacterial/genetics
Genes, Bacterial
Microbiota/drug effects
Gastrointestinal Microbiome/drug effects
Bacteria/genetics/drug effects
Animal Feed
RevDate: 2025-04-15
CmpDate: 2025-04-15
Berberine alters the gut microbiota metabolism and impairs spermatogenesis.
Acta biochimica et biophysica Sinica, 57(4):569-581.
Berberine (BBR) is used to treat diarrhea clinically. However, its reproductive toxicity is unclear. This study aims to investigate the impact of BBR on the male reproductive system. Intragastric BBR administration for 14 consecutive days results in a significant decrease in the serum testosterone concentration, epididymal sperm concentration, mating rate and fecundity of male mice. Testicular treatment with testosterone propionate (TP) partially reverses the damage caused by BBR to the male reproductive system. Mechanistically, the decrease in Muribaculaceae abundance in the gut microbiota of mice is the principal cause of the BBR-induced decrease in the sperm concentration. Both fecal microbiota transplantation (FMT) and polyethylene glycol (PEG) treatment demonstrate that Muribaculaceae is necessary for spermatogenesis. The intragastric administration of Muribaculaceae intestinale to BBR-treated mice restores the sperm concentration and testosterone levels. Metabolomic analysis reveals that BBR affects arginine and proline metabolism, of which ornithine level is downregulated. Combined analysis via 16S rRNA metagenomics sequencing and metabolomics shows that Muribaculaceae regulates ornithine level. The transcriptomic results of the testes indicate that the expressions of genes related to the low-density lipoprotein receptor (LDLR)-mediated testosterone synthesis pathway decrease after BBR administration. The transcriptional activity of the Ldlr gene in TM3 cells is increased with increased ornithine supplementation in the culture media, leading to increased testosterone synthesis. Overall, this study reveals an association between a BBR-induced decrease in Muribaculaceae abundance and defective spermatogenesis, providing a prospective therapeutic approach for addressing infertility-related decreases in serum testosterone triggered by changes in the gut microbiota composition.
Additional Links: PMID-39420836
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid39420836,
year = {2024},
author = {Qu, W and Xu, Y and Yang, J and Shi, H and Wang, J and Yu, X and Chen, J and Wang, B and Zhuoga, D and Luo, M and Liu, R},
title = {Berberine alters the gut microbiota metabolism and impairs spermatogenesis.},
journal = {Acta biochimica et biophysica Sinica},
volume = {57},
number = {4},
pages = {569-581},
doi = {10.3724/abbs.2024174},
pmid = {39420836},
issn = {1745-7270},
mesh = {Male ; *Gastrointestinal Microbiome/drug effects ; *Berberine/pharmacology ; Animals ; *Spermatogenesis/drug effects ; Mice ; Testosterone/blood ; Testis/drug effects/metabolism ; Fecal Microbiota Transplantation ; Mice, Inbred C57BL ; },
abstract = {Berberine (BBR) is used to treat diarrhea clinically. However, its reproductive toxicity is unclear. This study aims to investigate the impact of BBR on the male reproductive system. Intragastric BBR administration for 14 consecutive days results in a significant decrease in the serum testosterone concentration, epididymal sperm concentration, mating rate and fecundity of male mice. Testicular treatment with testosterone propionate (TP) partially reverses the damage caused by BBR to the male reproductive system. Mechanistically, the decrease in Muribaculaceae abundance in the gut microbiota of mice is the principal cause of the BBR-induced decrease in the sperm concentration. Both fecal microbiota transplantation (FMT) and polyethylene glycol (PEG) treatment demonstrate that Muribaculaceae is necessary for spermatogenesis. The intragastric administration of Muribaculaceae intestinale to BBR-treated mice restores the sperm concentration and testosterone levels. Metabolomic analysis reveals that BBR affects arginine and proline metabolism, of which ornithine level is downregulated. Combined analysis via 16S rRNA metagenomics sequencing and metabolomics shows that Muribaculaceae regulates ornithine level. The transcriptomic results of the testes indicate that the expressions of genes related to the low-density lipoprotein receptor (LDLR)-mediated testosterone synthesis pathway decrease after BBR administration. The transcriptional activity of the Ldlr gene in TM3 cells is increased with increased ornithine supplementation in the culture media, leading to increased testosterone synthesis. Overall, this study reveals an association between a BBR-induced decrease in Muribaculaceae abundance and defective spermatogenesis, providing a prospective therapeutic approach for addressing infertility-related decreases in serum testosterone triggered by changes in the gut microbiota composition.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Male
*Gastrointestinal Microbiome/drug effects
*Berberine/pharmacology
Animals
*Spermatogenesis/drug effects
Mice
Testosterone/blood
Testis/drug effects/metabolism
Fecal Microbiota Transplantation
Mice, Inbred C57BL
RevDate: 2025-04-14
CmpDate: 2025-04-14
Comparative analyses of the gut microbiome of two sympatric rodent species, Myodes rufocanus and Apodemus peninsulae, in northeast China based on metagenome sequencing.
PeerJ, 13:e19260.
The gut microbiota is integral to an animal's physiology, influencing nutritional metabolism, immune function, and environmental adaptation. Despite the significance of gut microbiota in wild rodents, the Korean field mouse (Apodemus peninsulae) and the gray red-backed vole (Myodes rufocanus) remain understudied. To address this, a metagenomic sequencing analysis of the gut microbiome of these sympatric rodents in northeast China's temperate forests was conducted. Intestinal contents were collected from A. peninsulae and M. rufocanus within the Mudanfeng National Nature Reserve. High-throughput sequencing elucidated the gut microbiome's composition, diversity, and functional pathways. Firmicutes, Bacteroidetes, and Proteobacteria were identified as the dominant phyla, with M. rufocanus showing greater microbiome diversity. Key findings indicated distinct gut bacterial communities between the species, with M. rufocanus having a higher abundance of Proteobacteria. The gut microbiota of A. peninsulae and M. rufocanus differed marginally in functional profiles, specifically in the breakdown of complex carbohydrates, which might reflect their distinct food preferences albeit both being herbivores with a substantial dietary overlap. The investigation further elucidated gut microbiota's contributions to energy metabolism and environmental adaptation mechanisms. This study aligns with information on rodent gut microbiota in literature and highlights the two understudied rodent species, providing comparative data for future studies investigating the role of gut microbiota in wildlife health and ecosystem functioning.
Additional Links: PMID-40226542
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40226542,
year = {2025},
author = {Cao, J and Wang, S and Ding, R and Liu, Y and Yuan, B},
title = {Comparative analyses of the gut microbiome of two sympatric rodent species, Myodes rufocanus and Apodemus peninsulae, in northeast China based on metagenome sequencing.},
journal = {PeerJ},
volume = {13},
number = {},
pages = {e19260},
pmid = {40226542},
issn = {2167-8359},
mesh = {Animals ; *Gastrointestinal Microbiome/genetics ; China ; *Arvicolinae/microbiology ; *Murinae/microbiology ; *Metagenome ; Metagenomics ; High-Throughput Nucleotide Sequencing ; Proteobacteria/genetics/isolation & purification ; Firmicutes/genetics/isolation & purification ; Sympatry ; Bacteroidetes/genetics/isolation & purification ; },
abstract = {The gut microbiota is integral to an animal's physiology, influencing nutritional metabolism, immune function, and environmental adaptation. Despite the significance of gut microbiota in wild rodents, the Korean field mouse (Apodemus peninsulae) and the gray red-backed vole (Myodes rufocanus) remain understudied. To address this, a metagenomic sequencing analysis of the gut microbiome of these sympatric rodents in northeast China's temperate forests was conducted. Intestinal contents were collected from A. peninsulae and M. rufocanus within the Mudanfeng National Nature Reserve. High-throughput sequencing elucidated the gut microbiome's composition, diversity, and functional pathways. Firmicutes, Bacteroidetes, and Proteobacteria were identified as the dominant phyla, with M. rufocanus showing greater microbiome diversity. Key findings indicated distinct gut bacterial communities between the species, with M. rufocanus having a higher abundance of Proteobacteria. The gut microbiota of A. peninsulae and M. rufocanus differed marginally in functional profiles, specifically in the breakdown of complex carbohydrates, which might reflect their distinct food preferences albeit both being herbivores with a substantial dietary overlap. The investigation further elucidated gut microbiota's contributions to energy metabolism and environmental adaptation mechanisms. This study aligns with information on rodent gut microbiota in literature and highlights the two understudied rodent species, providing comparative data for future studies investigating the role of gut microbiota in wildlife health and ecosystem functioning.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/genetics
China
*Arvicolinae/microbiology
*Murinae/microbiology
*Metagenome
Metagenomics
High-Throughput Nucleotide Sequencing
Proteobacteria/genetics/isolation & purification
Firmicutes/genetics/isolation & purification
Sympatry
Bacteroidetes/genetics/isolation & purification
RevDate: 2025-04-14
CmpDate: 2025-04-14
Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives.
Journal of microbiology and biotechnology, 35:e2412001 pii:jmb.2412.12001.
The gut microbiome, a dynamic and integral component of human health, has co-evolved with its host, playing essential roles in metabolism, immunity, and disease prevention. Traditional microbiome studies, primarily focused on microbial composition, have provided limited insights into the functional and mechanistic interactions between microbiota and their host. The advent of multi-omics technologies has transformed microbiome research by integrating genomics, transcriptomics, proteomics, and metabolomics, offering a comprehensive, systems-level understanding of microbial ecology and host-microbiome interactions. These advances have propelled innovations in personalized medicine, enabling more precise diagnostics and targeted therapeutic strategies. This review highlights recent breakthroughs in microbiome research, demonstrating how these approaches have elucidated microbial functions and their implications for health and disease. Additionally, it underscores the necessity of standardizing multi-omics methodologies, conducting large-scale cohort studies, and developing novel platforms for mechanistic studies, which are critical steps toward translating microbiome research into clinical applications and advancing precision medicine.
Additional Links: PMID-40223273
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40223273,
year = {2025},
author = {Yang, SY and Han, SM and Lee, JY and Kim, KS and Lee, JE and Lee, DW},
title = {Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives.},
journal = {Journal of microbiology and biotechnology},
volume = {35},
number = {},
pages = {e2412001},
doi = {10.4014/jmb.2412.12001},
pmid = {40223273},
issn = {1738-8872},
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; *Metagenomics/methods/trends ; *Metabolomics/methods ; *Genomics/methods ; Proteomics/methods ; Precision Medicine ; Host Microbial Interactions ; Multiomics ; },
abstract = {The gut microbiome, a dynamic and integral component of human health, has co-evolved with its host, playing essential roles in metabolism, immunity, and disease prevention. Traditional microbiome studies, primarily focused on microbial composition, have provided limited insights into the functional and mechanistic interactions between microbiota and their host. The advent of multi-omics technologies has transformed microbiome research by integrating genomics, transcriptomics, proteomics, and metabolomics, offering a comprehensive, systems-level understanding of microbial ecology and host-microbiome interactions. These advances have propelled innovations in personalized medicine, enabling more precise diagnostics and targeted therapeutic strategies. This review highlights recent breakthroughs in microbiome research, demonstrating how these approaches have elucidated microbial functions and their implications for health and disease. Additionally, it underscores the necessity of standardizing multi-omics methodologies, conducting large-scale cohort studies, and developing novel platforms for mechanistic studies, which are critical steps toward translating microbiome research into clinical applications and advancing precision medicine.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
*Metagenomics/methods/trends
*Metabolomics/methods
*Genomics/methods
Proteomics/methods
Precision Medicine
Host Microbial Interactions
Multiomics
RevDate: 2025-04-14
CmpDate: 2025-04-14
Comprehensive analysis of faecal metagenomic and serum metabolism revealed the role of gut microbes and related metabolites in detecting colorectal lateral spreading tumours.
Virulence, 16(1):2489154.
Colorectal lateral spreading tumours (LST), early-stage lesions of colorectal cancer (CRC), are associated with gut microbiota dysbiosis. However, the functional alterations in gut microbiota and their metabolic pathways remain inadequately understood. This study employed propensity score matching to compare 35 LST patients with 35 healthy controls. Metagenomic and metabolomic analyses revealed notable differences in gut microbiota composition and metabolic pathways. LST patients exhibited a marked reduction in short-chain fatty acid (SCFA)-producing probiotics, such as Roseburia, Clostridium, and Butyricicoccus sp-OF13-6, alongside anti-inflammatory metabolites. In contrast, potential intestinal pathogens linked to inflammatory bowel disease (IBD), including Escherichia and Citrobacter amalonaticus, were significantly enriched. Orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted significant metabolic disparities between the groups, with enrichment in pathways associated with cholesterol metabolism, choline metabolism in cancer, and amino acid metabolism - all relevant to cancer progression. Key biomarkers identified for LST included fumarate, succinate, glutamic acid, glycine, and L-aspartic acid, which were closely linked to these pathways. Functional studies demonstrated that these metabolites promoted the proliferation and invasion of HCT-116 and SW480 human colorectal cancer cells in vitro. Metagenomic and metabolomic analysis revealed a strong positive correlation between Escherichia and Ruminococcus sp-AM41-2AC abundance and the enriched pathways, whereas reductions in Roseburia species, including Roseburia-OF03-24 and Roseburia intestinalis_CAG13-exhibited negative correlations. These results suggest that gut microbiota and metabolite alterations in LST contribute to intestinal inflammation and CRC development, underscoring their potential as biomarkers for early detection and therapeutic targets.
Additional Links: PMID-40223231
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40223231,
year = {2025},
author = {Lin, H and Chen, Y and Zhou, M and Wang, H and Chen, L and Zheng, L and Wang, Z and Zheng, X and Lu, S},
title = {Comprehensive analysis of faecal metagenomic and serum metabolism revealed the role of gut microbes and related metabolites in detecting colorectal lateral spreading tumours.},
journal = {Virulence},
volume = {16},
number = {1},
pages = {2489154},
doi = {10.1080/21505594.2025.2489154},
pmid = {40223231},
issn = {2150-5608},
mesh = {Humans ; *Colorectal Neoplasms/diagnosis/microbiology/pathology/metabolism/blood ; *Gastrointestinal Microbiome ; *Feces/microbiology/chemistry ; Male ; Female ; Middle Aged ; Metagenomics ; Aged ; Metabolomics ; Dysbiosis/microbiology ; Bacteria/classification/genetics/metabolism/isolation & purification ; Metabolic Networks and Pathways ; Case-Control Studies ; Adult ; },
abstract = {Colorectal lateral spreading tumours (LST), early-stage lesions of colorectal cancer (CRC), are associated with gut microbiota dysbiosis. However, the functional alterations in gut microbiota and their metabolic pathways remain inadequately understood. This study employed propensity score matching to compare 35 LST patients with 35 healthy controls. Metagenomic and metabolomic analyses revealed notable differences in gut microbiota composition and metabolic pathways. LST patients exhibited a marked reduction in short-chain fatty acid (SCFA)-producing probiotics, such as Roseburia, Clostridium, and Butyricicoccus sp-OF13-6, alongside anti-inflammatory metabolites. In contrast, potential intestinal pathogens linked to inflammatory bowel disease (IBD), including Escherichia and Citrobacter amalonaticus, were significantly enriched. Orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted significant metabolic disparities between the groups, with enrichment in pathways associated with cholesterol metabolism, choline metabolism in cancer, and amino acid metabolism - all relevant to cancer progression. Key biomarkers identified for LST included fumarate, succinate, glutamic acid, glycine, and L-aspartic acid, which were closely linked to these pathways. Functional studies demonstrated that these metabolites promoted the proliferation and invasion of HCT-116 and SW480 human colorectal cancer cells in vitro. Metagenomic and metabolomic analysis revealed a strong positive correlation between Escherichia and Ruminococcus sp-AM41-2AC abundance and the enriched pathways, whereas reductions in Roseburia species, including Roseburia-OF03-24 and Roseburia intestinalis_CAG13-exhibited negative correlations. These results suggest that gut microbiota and metabolite alterations in LST contribute to intestinal inflammation and CRC development, underscoring their potential as biomarkers for early detection and therapeutic targets.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Colorectal Neoplasms/diagnosis/microbiology/pathology/metabolism/blood
*Gastrointestinal Microbiome
*Feces/microbiology/chemistry
Male
Female
Middle Aged
Metagenomics
Aged
Metabolomics
Dysbiosis/microbiology
Bacteria/classification/genetics/metabolism/isolation & purification
Metabolic Networks and Pathways
Case-Control Studies
Adult
RevDate: 2025-04-14
CmpDate: 2025-04-12
Shotgun metagenomics dataset of the core rhizo-microbiome of monoculture and soybean-precedent carrot.
BMC genomic data, 26(1):26.
OBJECTIVES: Carrot is a significant vegetable crop contributing to agricultural diversity and food security, but less is known about the core microbiome associated with its rhizosphere. More so, the effect of preceding crop and cropping history on the composition and diversity of carrot rhizo-microbiome remains largely unknown. With shotgun metagenomics, the study unveils how cropping systems direct rhizo-microbiome structure and functions, previously limited by other methods.
DATA DESCRIPTION: Metagenomic-DNA molecule was extracted from four replicates each (12 samples) of a distant bulk soil and the rhizosphere soils from monoculture and soybean-precedent carrots, with the Power soil® DNA Isolation kit. The DNA samples were subjected to Next Generation Sequencing using the Illumina Novaseq X Plus (PE 150) platform. Raw sequencing reads were assembled and annotated with MEGAHIT and LCA algorithms in MEGAN software respectively, before a quality control check was done with FASTP. CD-Hit was used to de-replicate the sequences and the removal of host genomic-DNA and contaminant sequences was done with Bowtie2. The clean sequence data, in FastQ files, were analyzed for taxonomic classification and functional diversity of the rhizosphere microbiome using the Micro_NR and KEGG database respectively. The findings provide insights into microbiome dynamics, with potential implications for sustainable agricultural practices.
Additional Links: PMID-40221653
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40221653,
year = {2025},
author = {Babalola, OO and Adebayo, AA and Enagbonma, BJ},
title = {Shotgun metagenomics dataset of the core rhizo-microbiome of monoculture and soybean-precedent carrot.},
journal = {BMC genomic data},
volume = {26},
number = {1},
pages = {26},
pmid = {40221653},
issn = {2730-6844},
mesh = {*Daucus carota/microbiology ; *Metagenomics/methods ; *Rhizosphere ; *Glycine max/microbiology/growth & development ; *Microbiota ; Soil Microbiology ; High-Throughput Nucleotide Sequencing ; },
abstract = {OBJECTIVES: Carrot is a significant vegetable crop contributing to agricultural diversity and food security, but less is known about the core microbiome associated with its rhizosphere. More so, the effect of preceding crop and cropping history on the composition and diversity of carrot rhizo-microbiome remains largely unknown. With shotgun metagenomics, the study unveils how cropping systems direct rhizo-microbiome structure and functions, previously limited by other methods.
DATA DESCRIPTION: Metagenomic-DNA molecule was extracted from four replicates each (12 samples) of a distant bulk soil and the rhizosphere soils from monoculture and soybean-precedent carrots, with the Power soil® DNA Isolation kit. The DNA samples were subjected to Next Generation Sequencing using the Illumina Novaseq X Plus (PE 150) platform. Raw sequencing reads were assembled and annotated with MEGAHIT and LCA algorithms in MEGAN software respectively, before a quality control check was done with FASTP. CD-Hit was used to de-replicate the sequences and the removal of host genomic-DNA and contaminant sequences was done with Bowtie2. The clean sequence data, in FastQ files, were analyzed for taxonomic classification and functional diversity of the rhizosphere microbiome using the Micro_NR and KEGG database respectively. The findings provide insights into microbiome dynamics, with potential implications for sustainable agricultural practices.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Daucus carota/microbiology
*Metagenomics/methods
*Rhizosphere
*Glycine max/microbiology/growth & development
*Microbiota
Soil Microbiology
High-Throughput Nucleotide Sequencing
RevDate: 2025-04-14
CmpDate: 2025-04-14
Microplastic biofilms as potential hotspots for plastic biodegradation and nitrogen cycling: a metagenomic perspective.
FEMS microbiology ecology, 101(5):.
Microplastics are an emerging contaminant worldwide, with the potential to impact organisms and facilitate the sorption and release of chemicals. Additionally, they create a novel habitat for microbial communities, forming biofilms known as the plastisphere. While the plastisphere has been studied in select aquatic environments, those in estuarine ecosystems merit additional attention due to their proximity to plastic debris sources. Additionally, the role plastisphere communities play in nutrient cycling has rarely been examined. This study used metagenomic analysis to investigate the taxonomic composition and functional genes of developing plastisphere communities living on petroleum-based (polyethylene and polyvinyl chloride) and biopolymer-based (polylactic acid) substrates. Isolated metagenome-assembled genomes (MAGs) showed plastisphere communities have the genes necessary to perform nitrification and denitrification and degrade petroleum and biopolymer-based plastics. The functions of these plastispheres have implications for estuarine nitrogen cycling and provide a possible explanation for the plastisphere microbes' competitiveness in biofilm environments. Overall, microplastics in the estuarine system provide a novel habitat for microbial communities and associated nitrogen cycling, facilitating the growth of microbes with plastic-degrading capabilities.
Additional Links: PMID-40175313
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40175313,
year = {2025},
author = {Fortin, SG and Uhlig, K and Hale, RC and Song, B},
title = {Microplastic biofilms as potential hotspots for plastic biodegradation and nitrogen cycling: a metagenomic perspective.},
journal = {FEMS microbiology ecology},
volume = {101},
number = {5},
pages = {},
doi = {10.1093/femsec/fiaf035},
pmid = {40175313},
issn = {1574-6941},
support = {//Virginia Water Resources Research Center/ ; 1737258//National Science Foundation/ ; },
mesh = {*Biofilms/growth & development ; *Microplastics/metabolism ; Biodegradation, Environmental ; *Nitrogen Cycle ; *Bacteria/genetics/metabolism/classification ; Metagenomics ; *Plastics/metabolism ; Metagenome ; Nitrification ; Microbiota ; Water Pollutants, Chemical/metabolism ; Petroleum/metabolism ; Polyesters ; },
abstract = {Microplastics are an emerging contaminant worldwide, with the potential to impact organisms and facilitate the sorption and release of chemicals. Additionally, they create a novel habitat for microbial communities, forming biofilms known as the plastisphere. While the plastisphere has been studied in select aquatic environments, those in estuarine ecosystems merit additional attention due to their proximity to plastic debris sources. Additionally, the role plastisphere communities play in nutrient cycling has rarely been examined. This study used metagenomic analysis to investigate the taxonomic composition and functional genes of developing plastisphere communities living on petroleum-based (polyethylene and polyvinyl chloride) and biopolymer-based (polylactic acid) substrates. Isolated metagenome-assembled genomes (MAGs) showed plastisphere communities have the genes necessary to perform nitrification and denitrification and degrade petroleum and biopolymer-based plastics. The functions of these plastispheres have implications for estuarine nitrogen cycling and provide a possible explanation for the plastisphere microbes' competitiveness in biofilm environments. Overall, microplastics in the estuarine system provide a novel habitat for microbial communities and associated nitrogen cycling, facilitating the growth of microbes with plastic-degrading capabilities.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Biofilms/growth & development
*Microplastics/metabolism
Biodegradation, Environmental
*Nitrogen Cycle
*Bacteria/genetics/metabolism/classification
Metagenomics
*Plastics/metabolism
Metagenome
Nitrification
Microbiota
Water Pollutants, Chemical/metabolism
Petroleum/metabolism
Polyesters
RevDate: 2025-04-14
CmpDate: 2025-04-14
Malus hupehensis leaves: a functional beverage for alleviating hepatic inflammation and modulating gut microbiota in diabetic mice.
Food & function, 16(8):2972-2990.
Malus hupehensis leaves (MHL), consumed as a daily beverage in Chinese folk tradition and recently recognized as a new food material, are abundant in polyphenols and bioactive compounds that demonstrate hypoglycemic, lipid-lowering, and anti-inflammatory effects. However, the antidiabetic mechanisms have not been fully elucidated. This study aimed to investigate the protective mechanisms of Malus hupehensis leaves' extract (MHLE) against type 2 diabetes mellitus (T2DM). The results showed that MHLE effectively ameliorated glucose and lipid metabolic abnormalities in db/db mice, and attenuated hepatic macrophage activation. Transcriptomic analysis of the liver revealed that MHLE primarily affects genes involved in inflammatory responses and inhibited the TLR4/MAPK pathway to reduce hepatic inflammation. Metagenomic sequencing identified changes in gut microbiota composition and showed that MHLE restored the abundance of Lachnospiraceae bacterium, Oscillospiraceae bacterium, and Clostridia bacterium while reducing the abundance of Escherichia coli, thereby ameliorating gut dysbiosis. The integrated regulation of metabolism, immune response, and the microbial environment by MHLE significantly alleviated symptoms of T2DM. This study offers strong scientific evidence for the potential use of MHL as a functional food.
Additional Links: PMID-40126388
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40126388,
year = {2025},
author = {Zhang, Q and Su, T and Pan, Y and Wang, X and Zhang, C and Qin, H and Li, M and Li, Q and Li, X and Guo, J and Wu, L and Qin, L and Liu, T},
title = {Malus hupehensis leaves: a functional beverage for alleviating hepatic inflammation and modulating gut microbiota in diabetic mice.},
journal = {Food & function},
volume = {16},
number = {8},
pages = {2972-2990},
doi = {10.1039/d4fo05325g},
pmid = {40126388},
issn = {2042-650X},
mesh = {Animals ; *Gastrointestinal Microbiome/drug effects ; Mice ; Plant Leaves/chemistry ; *Plant Extracts/pharmacology/administration & dosage ; *Diabetes Mellitus, Type 2/drug therapy ; Male ; *Malus/chemistry ; Liver/drug effects/immunology/metabolism ; Mice, Inbred C57BL ; Beverages/analysis ; Functional Food ; Inflammation ; },
abstract = {Malus hupehensis leaves (MHL), consumed as a daily beverage in Chinese folk tradition and recently recognized as a new food material, are abundant in polyphenols and bioactive compounds that demonstrate hypoglycemic, lipid-lowering, and anti-inflammatory effects. However, the antidiabetic mechanisms have not been fully elucidated. This study aimed to investigate the protective mechanisms of Malus hupehensis leaves' extract (MHLE) against type 2 diabetes mellitus (T2DM). The results showed that MHLE effectively ameliorated glucose and lipid metabolic abnormalities in db/db mice, and attenuated hepatic macrophage activation. Transcriptomic analysis of the liver revealed that MHLE primarily affects genes involved in inflammatory responses and inhibited the TLR4/MAPK pathway to reduce hepatic inflammation. Metagenomic sequencing identified changes in gut microbiota composition and showed that MHLE restored the abundance of Lachnospiraceae bacterium, Oscillospiraceae bacterium, and Clostridia bacterium while reducing the abundance of Escherichia coli, thereby ameliorating gut dysbiosis. The integrated regulation of metabolism, immune response, and the microbial environment by MHLE significantly alleviated symptoms of T2DM. This study offers strong scientific evidence for the potential use of MHL as a functional food.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/drug effects
Mice
Plant Leaves/chemistry
*Plant Extracts/pharmacology/administration & dosage
*Diabetes Mellitus, Type 2/drug therapy
Male
*Malus/chemistry
Liver/drug effects/immunology/metabolism
Mice, Inbred C57BL
Beverages/analysis
Functional Food
Inflammation
RevDate: 2025-04-12
CmpDate: 2025-04-12
The clinical value of metagenomic next-generation sequencing in the diagnosis of pulmonary tuberculosis and the exploration of lung microbiota characteristics.
Scientific reports, 15(1):12568.
The lung microbiota plays a critical role in many important physiological processes and is linked with various pulmonary infectious diseases. The present study aimed to characterize the lung microbiota in patients with pulmonary tuberculosis (PTB), and to explore the association between the abundance of Mycobacterium tuberculosis complex (MTBC) and the lung microbiota. This retrospective study included 190 patients with MTBC infection. The enrolled patients were classified into three groups based on the abundance results of bronchoalveolar lavage fluid (BALF) mNGS: low [reads per ten million (RPTM) = 1 ~ 1000], medium (RPTM = 1001 ~ 10000) and high (RPTM > 10000). In the high-abundance group, there were more bilateral lobar involvement and symptoms of cavitation. In addition to mNGS, the highest positivity rates were T-spot (92.36%), GeneXpert (71.58%), culture (68.95%) and AFB smear (17.84%). The positive rates of culture, AFB smear and GeneXpert increased with the increase of MTBC abundance, and the positive rates were highest in the high-abundance MTBC group. Both the alpha and beta diversity showed significant difference between the three groups, with the high-abundance MTBC groups showed lowest alpha diversity. The increased abundance of MTBC positively associated with the longer time of hospital stay. To sum up, the lung microbiota of patients with PTB were significantly distinct between groups with different abundant levels of MTBC. Combined with imaging features, a high abundance of MTBC suggests the patient is more severely ill and has a poorer prognosis.
Additional Links: PMID-40221512
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40221512,
year = {2025},
author = {Yong, Y and Zhou, L and Zhang, X and Ran, X and Guo, Y and Gai, W and Chen, Y},
title = {The clinical value of metagenomic next-generation sequencing in the diagnosis of pulmonary tuberculosis and the exploration of lung microbiota characteristics.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {12568},
pmid = {40221512},
issn = {2045-2322},
support = {82104236//National Natural Science Foundation of China/ ; },
mesh = {Humans ; *Tuberculosis, Pulmonary/diagnosis/microbiology ; Male ; Female ; Middle Aged ; *Lung/microbiology ; *Microbiota/genetics ; Adult ; *Mycobacterium tuberculosis/genetics/isolation & purification ; *High-Throughput Nucleotide Sequencing/methods ; Retrospective Studies ; *Metagenomics/methods ; Bronchoalveolar Lavage Fluid/microbiology ; Aged ; },
abstract = {The lung microbiota plays a critical role in many important physiological processes and is linked with various pulmonary infectious diseases. The present study aimed to characterize the lung microbiota in patients with pulmonary tuberculosis (PTB), and to explore the association between the abundance of Mycobacterium tuberculosis complex (MTBC) and the lung microbiota. This retrospective study included 190 patients with MTBC infection. The enrolled patients were classified into three groups based on the abundance results of bronchoalveolar lavage fluid (BALF) mNGS: low [reads per ten million (RPTM) = 1 ~ 1000], medium (RPTM = 1001 ~ 10000) and high (RPTM > 10000). In the high-abundance group, there were more bilateral lobar involvement and symptoms of cavitation. In addition to mNGS, the highest positivity rates were T-spot (92.36%), GeneXpert (71.58%), culture (68.95%) and AFB smear (17.84%). The positive rates of culture, AFB smear and GeneXpert increased with the increase of MTBC abundance, and the positive rates were highest in the high-abundance MTBC group. Both the alpha and beta diversity showed significant difference between the three groups, with the high-abundance MTBC groups showed lowest alpha diversity. The increased abundance of MTBC positively associated with the longer time of hospital stay. To sum up, the lung microbiota of patients with PTB were significantly distinct between groups with different abundant levels of MTBC. Combined with imaging features, a high abundance of MTBC suggests the patient is more severely ill and has a poorer prognosis.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Tuberculosis, Pulmonary/diagnosis/microbiology
Male
Female
Middle Aged
*Lung/microbiology
*Microbiota/genetics
Adult
*Mycobacterium tuberculosis/genetics/isolation & purification
*High-Throughput Nucleotide Sequencing/methods
Retrospective Studies
*Metagenomics/methods
Bronchoalveolar Lavage Fluid/microbiology
Aged
RevDate: 2025-04-12
CmpDate: 2025-04-12
Refining microbiome diversity analysis by concatenating and integrating dual 16S rRNA amplicon reads.
NPJ biofilms and microbiomes, 11(1):57.
Understanding the role of human gut microbiota in health and disease requires insights into its taxonomic composition and functional capabilities. This study evaluates whether concatenating paired-end reads enhances data output for gut microbiome analysis compared to the merging approach across various regions of the 16S rRNA gene. We assessed this approach in both mock communities and Korean cohorts with or without ulcerative colitis. Our results indicate that using the direct joining method for the V1-V3 or V6-V8 regions improves taxonomic resolution compared to merging paired-end reads (ME) in post-sequencing data. While predicting microbial function based on 16S rRNA sequencing has inherent limitations, integrating sequencing reads from both the V1-V3 and V6-V8 regions enhanced functional predictions. This was confirmed by whole metagenome sequencing (WMS) of Korean cohorts, where our approach improved taxa detection that was lost using the ME method. Thus, we propose that the integrated dual 16S rRNA sequencing technique serves as a valuable tool for microbiome research by bridging the gap between amplicon sequencing and WMS.
Additional Links: PMID-40221450
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40221450,
year = {2025},
author = {Kim, KS and Noh, J and Kim, BS and Koh, H and Lee, DW},
title = {Refining microbiome diversity analysis by concatenating and integrating dual 16S rRNA amplicon reads.},
journal = {NPJ biofilms and microbiomes},
volume = {11},
number = {1},
pages = {57},
pmid = {40221450},
issn = {2055-5008},
support = {RS-2021-NR056579//National Research Foundation of Korea (NRF)/ ; RS-2023-KH141436//Ministry of Health and Welfare (Ministry of Health, Welfare and Family Affairs)/ ; 200118770//Ministry of Trade, Industry and Energy (Ministry of Trade, Industry and Energy, Korea)/ ; },
mesh = {*RNA, Ribosomal, 16S/genetics ; Humans ; *Gastrointestinal Microbiome/genetics ; *Bacteria/classification/genetics/isolation & purification ; *Metagenomics/methods ; Sequence Analysis, DNA/methods ; Metagenome ; Colitis, Ulcerative/microbiology ; DNA, Bacterial/genetics ; Republic of Korea ; Phylogeny ; Feces/microbiology ; Biodiversity ; High-Throughput Nucleotide Sequencing ; },
abstract = {Understanding the role of human gut microbiota in health and disease requires insights into its taxonomic composition and functional capabilities. This study evaluates whether concatenating paired-end reads enhances data output for gut microbiome analysis compared to the merging approach across various regions of the 16S rRNA gene. We assessed this approach in both mock communities and Korean cohorts with or without ulcerative colitis. Our results indicate that using the direct joining method for the V1-V3 or V6-V8 regions improves taxonomic resolution compared to merging paired-end reads (ME) in post-sequencing data. While predicting microbial function based on 16S rRNA sequencing has inherent limitations, integrating sequencing reads from both the V1-V3 and V6-V8 regions enhanced functional predictions. This was confirmed by whole metagenome sequencing (WMS) of Korean cohorts, where our approach improved taxa detection that was lost using the ME method. Thus, we propose that the integrated dual 16S rRNA sequencing technique serves as a valuable tool for microbiome research by bridging the gap between amplicon sequencing and WMS.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*RNA, Ribosomal, 16S/genetics
Humans
*Gastrointestinal Microbiome/genetics
*Bacteria/classification/genetics/isolation & purification
*Metagenomics/methods
Sequence Analysis, DNA/methods
Metagenome
Colitis, Ulcerative/microbiology
DNA, Bacterial/genetics
Republic of Korea
Phylogeny
Feces/microbiology
Biodiversity
High-Throughput Nucleotide Sequencing
RevDate: 2025-04-11
CmpDate: 2025-04-11
Detecting microbial engraftment after FMT using placebo sequencing and culture enriched metagenomics to sort signals from noise.
Nature communications, 16(1):3469.
Fecal microbiota transplantation (FMT) has shown efficacy for the treatment of ulcerative colitis but with variable response between patients and trials. The mechanisms underlying FMT's therapeutic effects remains poorly understood but is generally assumed to involve engraftment of donor microbiota into the recipient's microbiome. Reports of microbial engraftment following FMT have been inconsistent between studies. Here, we investigate microbial engraftment in a previous randomized controlled trial (NCT01545908), in which FMT was sourced from a single donor, using amplicon-based profiling, shotgun metagenomics, and culture-enriched metagenomics. Placebo samples were included to estimate engraftment noise, and a significant level of false-positive engraftment was observed which confounds the prediction of true engraftment. We show that analyzing engraftment across multiple patients from a single donor enhances the accuracy of detection. We identified a unique set of genes engrafted in responders to FMT which supports strain displacement as the primary mechanism of engraftment in our cohort.
Additional Links: PMID-40216789
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40216789,
year = {2025},
author = {Shekarriz, S and Szamosi, JC and Whelan, FJ and Lau, JT and Libertucci, J and Rossi, L and Fontes, ME and Wolfe, M and Lee, CH and Moayyedi, P and Surette, MG},
title = {Detecting microbial engraftment after FMT using placebo sequencing and culture enriched metagenomics to sort signals from noise.},
journal = {Nature communications},
volume = {16},
number = {1},
pages = {3469},
pmid = {40216789},
issn = {2041-1723},
mesh = {Humans ; *Fecal Microbiota Transplantation/methods ; *Metagenomics/methods ; *Colitis, Ulcerative/therapy/microbiology ; *Gastrointestinal Microbiome/genetics ; Feces/microbiology ; Male ; Female ; Placebos ; Adult ; Middle Aged ; },
abstract = {Fecal microbiota transplantation (FMT) has shown efficacy for the treatment of ulcerative colitis but with variable response between patients and trials. The mechanisms underlying FMT's therapeutic effects remains poorly understood but is generally assumed to involve engraftment of donor microbiota into the recipient's microbiome. Reports of microbial engraftment following FMT have been inconsistent between studies. Here, we investigate microbial engraftment in a previous randomized controlled trial (NCT01545908), in which FMT was sourced from a single donor, using amplicon-based profiling, shotgun metagenomics, and culture-enriched metagenomics. Placebo samples were included to estimate engraftment noise, and a significant level of false-positive engraftment was observed which confounds the prediction of true engraftment. We show that analyzing engraftment across multiple patients from a single donor enhances the accuracy of detection. We identified a unique set of genes engrafted in responders to FMT which supports strain displacement as the primary mechanism of engraftment in our cohort.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Fecal Microbiota Transplantation/methods
*Metagenomics/methods
*Colitis, Ulcerative/therapy/microbiology
*Gastrointestinal Microbiome/genetics
Feces/microbiology
Male
Female
Placebos
Adult
Middle Aged
RevDate: 2025-04-12
CmpDate: 2025-04-12
Huang-qin decoction alleviates deoxycholic acid-induced colorectal cancer in mice by regulating gut microbiota.
Journal of ethnopharmacology, 346:119715.
Huangqin Decoction (HQD), a traditional Chinese medicine (TCM) formula documented in Shang Han Lun, has demonstrated safety and efficacy in the treatment of ulcerative colitis (UC). Recent studies also suggest that HQD exerts therapeutic effects on colorectal cancer (CRC). However, the underlying mechanisms remain unclear.
AIMS OF THE STUDY: This study aimed to investigate the therapeutic effects of HQD on CRC and explore its potential mechanisms of action.
METHODS: The active ingredients and potential targets of HQD were identified through network pharmacology-based analyses. The CRC-related targets were compared with those of HQD. Shared targets were subjected to Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and a protein-protein interaction (PPI) network was constructed. Additionally, APC[min/+] mice were treated with 0.2 % deoxycholic acid (DCA) and gavaged with low or high doses of HQD. Tumor morphology was assessed using hematoxylin and eosin (HE) staining. Immunohistochemical staining was performed to evaluate the expression of Ki-67, Caspase-3, and MUC2 in the intestine. Periodic acid-Schiff (PAS) and PAS-alcian blue (PAS-AB) staining were utilized to detect mucin distribution and the number of goblet cells in the intestines of the mice. The mRNA expression levels of interleukin 6 (IL-6), mitogen-activated protein kinase 8 (MAPK8), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), albumin (ALB), and Caspase 3 (CASP3) were quantified using quantitative reverse-transcription PCR (qRT-PCR). Immunofluorescence was employed to assess the degree of apoptosis. Additionally, 16S ribosomal RNA gene sequencing, sequence curation and annotation, and metagenomic sequencing were performed to analyze changes in the composition of the mouse intestinal microbiota and related functions and signaling pathways.
RESULTS: The active ingredients of HQD were identified. GO and KEGG pathway enrichment analyses indicated that the shared targets were primarily involved in tumor suppression. HQD effectively treated DCA-induced CRC in mice. Furthermore, positive PAS and PAS-AB staining was significantly increased in the intestines of mice treated with HQD. HQD enhanced the abundance of Lachnospiraceae, Firmicutes, Fusobacteria, and Clostridium, while reducing the abundance of Eggerthellales. Additionally, HQD modulated secondary bile acid metabolism, carbohydrate synthesis, and other energy metabolism pathways, which may underlie its therapeutic effects.
CONCLUSION: HQD effectively treated CRC in mice, and its mechanisms of action may be related to the regulation of the gut microbiota.
Additional Links: PMID-40158829
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40158829,
year = {2025},
author = {Liu, Y and Zhang, Q and Lu, L and Qian, Y and Wu, Y and Hu, D and Xu, Y and Xu, H and Ji, G},
title = {Huang-qin decoction alleviates deoxycholic acid-induced colorectal cancer in mice by regulating gut microbiota.},
journal = {Journal of ethnopharmacology},
volume = {346},
number = {},
pages = {119715},
doi = {10.1016/j.jep.2025.119715},
pmid = {40158829},
issn = {1872-7573},
mesh = {Animals ; *Drugs, Chinese Herbal/pharmacology/therapeutic use ; *Gastrointestinal Microbiome/drug effects ; *Colorectal Neoplasms/chemically induced/drug therapy/microbiology/pathology ; Mice ; Deoxycholic Acid/toxicity ; Male ; Mice, Inbred C57BL ; Protein Interaction Maps/drug effects ; Network Pharmacology ; Apoptosis/drug effects ; Astragalus propinquus ; },
abstract = {Huangqin Decoction (HQD), a traditional Chinese medicine (TCM) formula documented in Shang Han Lun, has demonstrated safety and efficacy in the treatment of ulcerative colitis (UC). Recent studies also suggest that HQD exerts therapeutic effects on colorectal cancer (CRC). However, the underlying mechanisms remain unclear.
AIMS OF THE STUDY: This study aimed to investigate the therapeutic effects of HQD on CRC and explore its potential mechanisms of action.
METHODS: The active ingredients and potential targets of HQD were identified through network pharmacology-based analyses. The CRC-related targets were compared with those of HQD. Shared targets were subjected to Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and a protein-protein interaction (PPI) network was constructed. Additionally, APC[min/+] mice were treated with 0.2 % deoxycholic acid (DCA) and gavaged with low or high doses of HQD. Tumor morphology was assessed using hematoxylin and eosin (HE) staining. Immunohistochemical staining was performed to evaluate the expression of Ki-67, Caspase-3, and MUC2 in the intestine. Periodic acid-Schiff (PAS) and PAS-alcian blue (PAS-AB) staining were utilized to detect mucin distribution and the number of goblet cells in the intestines of the mice. The mRNA expression levels of interleukin 6 (IL-6), mitogen-activated protein kinase 8 (MAPK8), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), albumin (ALB), and Caspase 3 (CASP3) were quantified using quantitative reverse-transcription PCR (qRT-PCR). Immunofluorescence was employed to assess the degree of apoptosis. Additionally, 16S ribosomal RNA gene sequencing, sequence curation and annotation, and metagenomic sequencing were performed to analyze changes in the composition of the mouse intestinal microbiota and related functions and signaling pathways.
RESULTS: The active ingredients of HQD were identified. GO and KEGG pathway enrichment analyses indicated that the shared targets were primarily involved in tumor suppression. HQD effectively treated DCA-induced CRC in mice. Furthermore, positive PAS and PAS-AB staining was significantly increased in the intestines of mice treated with HQD. HQD enhanced the abundance of Lachnospiraceae, Firmicutes, Fusobacteria, and Clostridium, while reducing the abundance of Eggerthellales. Additionally, HQD modulated secondary bile acid metabolism, carbohydrate synthesis, and other energy metabolism pathways, which may underlie its therapeutic effects.
CONCLUSION: HQD effectively treated CRC in mice, and its mechanisms of action may be related to the regulation of the gut microbiota.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Drugs, Chinese Herbal/pharmacology/therapeutic use
*Gastrointestinal Microbiome/drug effects
*Colorectal Neoplasms/chemically induced/drug therapy/microbiology/pathology
Mice
Deoxycholic Acid/toxicity
Male
Mice, Inbred C57BL
Protein Interaction Maps/drug effects
Network Pharmacology
Apoptosis/drug effects
Astragalus propinquus
RevDate: 2025-04-12
CmpDate: 2025-04-12
The relationship between the gastric cancer microbiome and clinicopathological factors: a metagenomic investigation from the 100,000 genomes project and The Cancer Genome Atlas.
Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 28(3):358-371.
BACKGROUND: Findings from previous gastric cancer microbiome studies have been conflicting, potentially due to patient and/or tumor heterogeneity. The intratumoral gastric cancer microbiome and its relationship with clinicopathological variables have not yet been characterized in detail. We hypothesized that variation in gastric cancer microbial abundance, alpha diversity, and composition is related to clinicopathological characteristics.
METHODS: Metagenomic analysis of 529 GC samples was performed, including whole exome sequencing data from The Cancer Genome Atlas (TCGA) and whole genome sequencing data from the 100,000 Genomes Project. Microbial abundance, alpha diversity, and composition were compared across patient age, sex, tumor location, geographic origin, pathological depth of invasion, pathological lymph node status, histological phenotype, microsatellite instability status, and TCGA molecular subtype.
RESULTS: Gastric cancer microbiomes resembled previous results, with Prevotella, Selenomonas, Stomatobaculum, Streptococcus, Lactobacillus, and Lachnospiraceae commonly seen across both cohorts. Within the TCGA cohort, microbial abundance and alpha diversity were greater in gastric cancers with microsatellite instability, lower pathological depth of invasion, intestinal-type histology, and those originating from Asia. Microsatellite instability status was associated with microbiome composition in both cohorts. Sex and pathological depth of invasion were associated with microbiome composition in the TCGA cohort.
CONCLUSION: The intratumoral gastric cancer microbiome appears to differ according to clinicopathological factors. Certain clinicopathological factors associated with favourable outcomes in gastric cancer were observed to be associated with greater microbial abundance and diversity. This highlights the need for further work to understand the underlying biological mechanisms behind the observed microbiome differences and their potential clinical and therapeutic impact.
Additional Links: PMID-39961991
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid39961991,
year = {2025},
author = {Booth, ME and Wood, HM and Travis, MA and , and Quirke, P and Grabsch, HI},
title = {The relationship between the gastric cancer microbiome and clinicopathological factors: a metagenomic investigation from the 100,000 genomes project and The Cancer Genome Atlas.},
journal = {Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association},
volume = {28},
number = {3},
pages = {358-371},
pmid = {39961991},
issn = {1436-3305},
mesh = {Humans ; *Stomach Neoplasms/microbiology/pathology/genetics ; Male ; Female ; Middle Aged ; Microsatellite Instability ; Metagenomics/methods ; Aged ; *Gastrointestinal Microbiome ; Adult ; },
abstract = {BACKGROUND: Findings from previous gastric cancer microbiome studies have been conflicting, potentially due to patient and/or tumor heterogeneity. The intratumoral gastric cancer microbiome and its relationship with clinicopathological variables have not yet been characterized in detail. We hypothesized that variation in gastric cancer microbial abundance, alpha diversity, and composition is related to clinicopathological characteristics.
METHODS: Metagenomic analysis of 529 GC samples was performed, including whole exome sequencing data from The Cancer Genome Atlas (TCGA) and whole genome sequencing data from the 100,000 Genomes Project. Microbial abundance, alpha diversity, and composition were compared across patient age, sex, tumor location, geographic origin, pathological depth of invasion, pathological lymph node status, histological phenotype, microsatellite instability status, and TCGA molecular subtype.
RESULTS: Gastric cancer microbiomes resembled previous results, with Prevotella, Selenomonas, Stomatobaculum, Streptococcus, Lactobacillus, and Lachnospiraceae commonly seen across both cohorts. Within the TCGA cohort, microbial abundance and alpha diversity were greater in gastric cancers with microsatellite instability, lower pathological depth of invasion, intestinal-type histology, and those originating from Asia. Microsatellite instability status was associated with microbiome composition in both cohorts. Sex and pathological depth of invasion were associated with microbiome composition in the TCGA cohort.
CONCLUSION: The intratumoral gastric cancer microbiome appears to differ according to clinicopathological factors. Certain clinicopathological factors associated with favourable outcomes in gastric cancer were observed to be associated with greater microbial abundance and diversity. This highlights the need for further work to understand the underlying biological mechanisms behind the observed microbiome differences and their potential clinical and therapeutic impact.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Stomach Neoplasms/microbiology/pathology/genetics
Male
Female
Middle Aged
Microsatellite Instability
Metagenomics/methods
Aged
*Gastrointestinal Microbiome
Adult
RevDate: 2025-04-12
CmpDate: 2025-04-12
No association between the early-life gut microbiota and childhood body mass index and body composition.
Med (New York, N.Y.), 6(4):100538.
BACKGROUND: The gut microbiota has been implicated in adult obesity, but the causality is still unclear. It has been hypothesized that an obesity-prone gut microbiota can be established in infancy, but only few studies have examined the early-life gut microbiota in relation to obesity in childhood, and no consistent associations have been reported. Here, we examine the association between the early-life gut microbiota and body mass index (BMI) development and body composition throughout childhood.
METHODS: Gut microbiota from stool were collected from 700 children in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) cohort at ages of 1 week, 1month, 1 year, 4 years, and 6 years and analyzed by 16S rRNA gene sequencing. Outcomes included BMI World Health Organization (WHO) Z scores (zBMI), overweight (zBMI > 1.04) and obesity (zBMI > 1.64) (0-10 years), and adiposity rebound and body composition from dual-energy X-ray absorptiometry at 6 years.
FINDINGS: The early-life gut microbiota diversity, overall composition, and individual taxon abundances in unsupervised and supervised models were not consistently associated with either current or later BMI Z scores, overweight, obesity, adiposity rebound, or body composition in childhood.
CONCLUSIONS: In a deeply characterized longitudinal birth cohort, we did not observe any consistent associations between the early-life gut microbiota and BMI or risk of obesity in later childhood. While this does not conclusively rule out a relationship, it suggests that if such associations exist, they may be more complex and potentially influenced by factors emerging later in life, including lifestyle changes.
FUNDING: COPSAC is funded by private and public research funds (all listed on www.copsac.com).
Additional Links: PMID-39536756
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid39536756,
year = {2025},
author = {Poulsen, CE and Vinding, R and Rasmussen, MA and Shah, S and Trivedi, U and Rodriguez, CL and Widdowson, ML and Jiang, J and Poulsen, CS and Eliasen, A and Chawes, B and Bønnelykke, K and Hansen, CHF and Sørensen, SJ and Thorsen, J and Stokholm, J},
title = {No association between the early-life gut microbiota and childhood body mass index and body composition.},
journal = {Med (New York, N.Y.)},
volume = {6},
number = {4},
pages = {100538},
doi = {10.1016/j.medj.2024.10.015},
pmid = {39536756},
issn = {2666-6340},
mesh = {Humans ; *Gastrointestinal Microbiome ; *Body Mass Index ; Female ; *Body Composition ; Male ; Child, Preschool ; Infant ; Child ; *Pediatric Obesity/microbiology/epidemiology ; Prospective Studies ; Feces/microbiology ; Infant, Newborn ; Denmark/epidemiology ; RNA, Ribosomal, 16S ; Adiposity ; Overweight/epidemiology ; },
abstract = {BACKGROUND: The gut microbiota has been implicated in adult obesity, but the causality is still unclear. It has been hypothesized that an obesity-prone gut microbiota can be established in infancy, but only few studies have examined the early-life gut microbiota in relation to obesity in childhood, and no consistent associations have been reported. Here, we examine the association between the early-life gut microbiota and body mass index (BMI) development and body composition throughout childhood.
METHODS: Gut microbiota from stool were collected from 700 children in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) cohort at ages of 1 week, 1month, 1 year, 4 years, and 6 years and analyzed by 16S rRNA gene sequencing. Outcomes included BMI World Health Organization (WHO) Z scores (zBMI), overweight (zBMI > 1.04) and obesity (zBMI > 1.64) (0-10 years), and adiposity rebound and body composition from dual-energy X-ray absorptiometry at 6 years.
FINDINGS: The early-life gut microbiota diversity, overall composition, and individual taxon abundances in unsupervised and supervised models were not consistently associated with either current or later BMI Z scores, overweight, obesity, adiposity rebound, or body composition in childhood.
CONCLUSIONS: In a deeply characterized longitudinal birth cohort, we did not observe any consistent associations between the early-life gut microbiota and BMI or risk of obesity in later childhood. While this does not conclusively rule out a relationship, it suggests that if such associations exist, they may be more complex and potentially influenced by factors emerging later in life, including lifestyle changes.
FUNDING: COPSAC is funded by private and public research funds (all listed on www.copsac.com).},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome
*Body Mass Index
Female
*Body Composition
Male
Child, Preschool
Infant
Child
*Pediatric Obesity/microbiology/epidemiology
Prospective Studies
Feces/microbiology
Infant, Newborn
Denmark/epidemiology
RNA, Ribosomal, 16S
Adiposity
Overweight/epidemiology
RevDate: 2025-04-11
CmpDate: 2025-04-11
Screening and community succession and functional prediction of high-efficiency degradation microbial communities for rice straw at low-temperature.
Extremophiles : life under extreme conditions, 29(2):20.
Traditional straw return relies on microbial degradation, but cold winters delay it, risking crops. Therefore, a microbial community adapted to rice straw degradation in cold regions was constructed by restrictive consecutively sub-cultured under low-temperature limitations. The capabilities of the microbial community, such as adaptability, stability, and degradation power, were evaluated by analyzing straw degradation features, Characterization experiments and lignocellulose enzyme activities across multiple generations. 16S amplicon sequencing was used to monitor the changes in its structure over generations. Metagenomic sequencing uses CAZy and KEGG to classify gene functions. The results showed that the highest degradation efficiencies and enzyme activities were observed in the E and F generations, dominated by Proteobacteria, Bacteroidetes, and Fungi The stable microbial community was designated as LJ-7. Metagenomic analysis showed that functional genes of LJ-7 were mainly concentrated in glycoside hydrolase (GHs) and glycosyl transferase (GTs) related genes which contained many fiber and lignin-degrading enzyme genes. It is speculated that microbial enzymes degrade straw by breaking down its complex structure into monosaccharides or metabolizing quinone compounds for energy. This experiment successfully screened a microbial community capable of degrading rice straw at low temperatures, thus offering novel research insights and pathways for straw degradation in cold conditions.
Additional Links: PMID-40216686
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40216686,
year = {2025},
author = {Fan, Q and Zhang, Y and Lian, J and Liang, D and Yu, J and Liu, X and Zhang, N},
title = {Screening and community succession and functional prediction of high-efficiency degradation microbial communities for rice straw at low-temperature.},
journal = {Extremophiles : life under extreme conditions},
volume = {29},
number = {2},
pages = {20},
pmid = {40216686},
issn = {1433-4909},
support = {2023YFD2100803//National Key R&D Programme Project of China/ ; },
mesh = {*Oryza/microbiology/metabolism ; *Microbiota ; *Cold Temperature ; Lignin/metabolism ; },
abstract = {Traditional straw return relies on microbial degradation, but cold winters delay it, risking crops. Therefore, a microbial community adapted to rice straw degradation in cold regions was constructed by restrictive consecutively sub-cultured under low-temperature limitations. The capabilities of the microbial community, such as adaptability, stability, and degradation power, were evaluated by analyzing straw degradation features, Characterization experiments and lignocellulose enzyme activities across multiple generations. 16S amplicon sequencing was used to monitor the changes in its structure over generations. Metagenomic sequencing uses CAZy and KEGG to classify gene functions. The results showed that the highest degradation efficiencies and enzyme activities were observed in the E and F generations, dominated by Proteobacteria, Bacteroidetes, and Fungi The stable microbial community was designated as LJ-7. Metagenomic analysis showed that functional genes of LJ-7 were mainly concentrated in glycoside hydrolase (GHs) and glycosyl transferase (GTs) related genes which contained many fiber and lignin-degrading enzyme genes. It is speculated that microbial enzymes degrade straw by breaking down its complex structure into monosaccharides or metabolizing quinone compounds for energy. This experiment successfully screened a microbial community capable of degrading rice straw at low temperatures, thus offering novel research insights and pathways for straw degradation in cold conditions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Oryza/microbiology/metabolism
*Microbiota
*Cold Temperature
Lignin/metabolism
RevDate: 2025-04-11
Multi-Omics Analysis of Gut Microbiome and Host Metabolism in Different Populations of Chinese Alligators (alligator sinensis) During Various Reintroduction Phases.
Ecology and evolution, 15(4):e71221.
Reintroduction plays a significant role in the self-maintenance and reconstruction of wild animal populations, serving as a communication bridge between captive and wild animals. The Chinese alligator (Alligator sinensis) is a distinct and endangered reptile species found in China. The mechanisms by which artificially bred Chinese alligators adapt following their release into the wild remain poorly understood. This study aims to elucidate the alterations in gut microbiomes and metabolic phenotypes of Chinese alligators during their reintroduction. During the Chinese alligator's reintroduction, Fusobacterium and Cetobacterium became more abundant, while typical pathogens declined significantly. The gut type of the Chinese alligator changed from Acinetobacter to Cetobacterium. The construction of the gut microbial community was dominated by neutral (random) processes and shifted towards deterministic processes with the progression of reintroduction. In terms of species function, reintroduction significantly upregulated the expression of host immune-related genes and significantly decreased the expression of gut bacterial pathogenic genes and antibiotic resistance genes. Metagenomic and metabolomic KEGG enrichment analyses indicate that glucoside hydrolase families 13 and 23-alongside glycolysis and gluconeogenesis pathways-may play pivotal roles in energy metabolism, host-pathogen interactions, and homeostasis maintenance for Chinese alligators. Differential metabolite analysis identified significant upregulation of metabolites related to neuroendocrine immune modulation and significant down-regulation of anti-inflammatory metabolites during Chinese alligator reintroduction. Association analysis showed that there were significant co-metabolic effects between microorganisms and metabolites, which coordinated host adaptive interaction. This study provides insights into the synergistic mechanisms of host adaptation and wild environment adaptation for Chinese alligators.
Additional Links: PMID-40212922
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40212922,
year = {2025},
author = {Wang, C and Li, C and You, F and Zhou, Y and Tu, G and Liu, R and Yi, P and Wu, X and Nie, H},
title = {Multi-Omics Analysis of Gut Microbiome and Host Metabolism in Different Populations of Chinese Alligators (alligator sinensis) During Various Reintroduction Phases.},
journal = {Ecology and evolution},
volume = {15},
number = {4},
pages = {e71221},
pmid = {40212922},
issn = {2045-7758},
abstract = {Reintroduction plays a significant role in the self-maintenance and reconstruction of wild animal populations, serving as a communication bridge between captive and wild animals. The Chinese alligator (Alligator sinensis) is a distinct and endangered reptile species found in China. The mechanisms by which artificially bred Chinese alligators adapt following their release into the wild remain poorly understood. This study aims to elucidate the alterations in gut microbiomes and metabolic phenotypes of Chinese alligators during their reintroduction. During the Chinese alligator's reintroduction, Fusobacterium and Cetobacterium became more abundant, while typical pathogens declined significantly. The gut type of the Chinese alligator changed from Acinetobacter to Cetobacterium. The construction of the gut microbial community was dominated by neutral (random) processes and shifted towards deterministic processes with the progression of reintroduction. In terms of species function, reintroduction significantly upregulated the expression of host immune-related genes and significantly decreased the expression of gut bacterial pathogenic genes and antibiotic resistance genes. Metagenomic and metabolomic KEGG enrichment analyses indicate that glucoside hydrolase families 13 and 23-alongside glycolysis and gluconeogenesis pathways-may play pivotal roles in energy metabolism, host-pathogen interactions, and homeostasis maintenance for Chinese alligators. Differential metabolite analysis identified significant upregulation of metabolites related to neuroendocrine immune modulation and significant down-regulation of anti-inflammatory metabolites during Chinese alligator reintroduction. Association analysis showed that there were significant co-metabolic effects between microorganisms and metabolites, which coordinated host adaptive interaction. This study provides insights into the synergistic mechanisms of host adaptation and wild environment adaptation for Chinese alligators.},
}
RevDate: 2025-04-11
CmpDate: 2025-04-11
Impacts of prenatal nutrition on metabolic pathways in beef cattle: an integrative approach using metabolomics and metagenomics.
BMC genomics, 26(1):359.
BACKGROUND: This study assessed the long-term metabolic effects of prenatal nutrition in Nelore bulls through an integrated analysis of metabolome and microbiome data to elucidate the interconnected host-microbe metabolic pathways. To this end, a total of 126 cows were assigned to three supplementation strategies during pregnancy: NP (control)- only mineral supplementation; PP- protein-energy supplementation during the last trimester; and FP- protein-energy supplementation throughout pregnancy. At the end of the finishing phase, blood, fecal, and ruminal fluid samples were collected from 63 male offspring. The plasma underwent targeted metabolomics analysis, and fecal and ruminal fluid samples were used to perform 16 S rRNA gene sequencing. Metabolite and ASV (amplicon sequence variant) co-abundance networks were constructed for each treatment using the weighted gene correlation network analysis (WGCNA) framework. Significant modules (p ≤ 0.1) were selected for over-representation analyses to assess the metabolic pathways underlying the metabolome (MetaboAnalyst 6.0) and the microbiome (MicrobiomeProfiler). To explore the metabolome-metagenome interplay, correlation analyses between host metabolome and microbiome were performed. Additionally, a holistic integration of metabolic pathways was performed (MicrobiomeAnalyst 2.0).
RESULTS: A total of one and two metabolite modules associated with the NP and FP were identified, respectively. Regarding fecal microbiome, three, one, and two modules for the NP, PP, and FP were identified, respectively. The rumen microbiome demonstrated two modules correlated with each of the groups under study. Metabolite and microbiome enrichment analyses revealed the main metabolic pathways associated with lipid and protein metabolism, and regulatory mechanisms. The correlation analyses performed between the host metabolome and fecal ASVs revealed 13 and 12 significant correlations for NP and FP, respectively. Regarding the rumen, 16 and 17 significant correlations were found for NP and FP, respectively. The NP holistic analysis was mainly associated with amino acid and methane metabolism. Glycerophospholipid and polyunsaturated fatty acid metabolism were over-represented in the FP group.
CONCLUSIONS: Prenatal nutrition significantly affected the plasma metabolome, fecal microbiome, and ruminal fluid microbiome of Nelore bulls, providing insights into key pathways in protein, lipid, and methane metabolism. These findings offer novel discoveries about the molecular mechanisms underlying the effects of prenatal nutrition.
CLINICAL TRIAL NUMBER: Not applicable.
Additional Links: PMID-40211121
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40211121,
year = {2025},
author = {Polizel, GHG and Diniz, WJS and Cesar, ASM and Ramírez-Zamudio, GD and Cánovas, A and Dias, EFF and Fernandes, AC and Prati, BCT and Furlan, É and Pombo, GDV and Santana, MHA},
title = {Impacts of prenatal nutrition on metabolic pathways in beef cattle: an integrative approach using metabolomics and metagenomics.},
journal = {BMC genomics},
volume = {26},
number = {1},
pages = {359},
pmid = {40211121},
issn = {1471-2164},
support = {2021/03265-1//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; 2017/12105-2//Fundação de Amparo à Pesquisa do Estado de São Paulo/ ; 307593/2021-5//Conselho Nacional de Desenvolvimento Científico e Tecnológico/ ; 001//Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/ ; },
mesh = {Animals ; Cattle ; Female ; *Metabolomics/methods ; Pregnancy ; *Metabolic Networks and Pathways ; *Metagenomics/methods ; Male ; Metabolome ; Rumen/microbiology ; Microbiota ; *Prenatal Nutritional Physiological Phenomena ; *Animal Nutritional Physiological Phenomena ; Gastrointestinal Microbiome ; },
abstract = {BACKGROUND: This study assessed the long-term metabolic effects of prenatal nutrition in Nelore bulls through an integrated analysis of metabolome and microbiome data to elucidate the interconnected host-microbe metabolic pathways. To this end, a total of 126 cows were assigned to three supplementation strategies during pregnancy: NP (control)- only mineral supplementation; PP- protein-energy supplementation during the last trimester; and FP- protein-energy supplementation throughout pregnancy. At the end of the finishing phase, blood, fecal, and ruminal fluid samples were collected from 63 male offspring. The plasma underwent targeted metabolomics analysis, and fecal and ruminal fluid samples were used to perform 16 S rRNA gene sequencing. Metabolite and ASV (amplicon sequence variant) co-abundance networks were constructed for each treatment using the weighted gene correlation network analysis (WGCNA) framework. Significant modules (p ≤ 0.1) were selected for over-representation analyses to assess the metabolic pathways underlying the metabolome (MetaboAnalyst 6.0) and the microbiome (MicrobiomeProfiler). To explore the metabolome-metagenome interplay, correlation analyses between host metabolome and microbiome were performed. Additionally, a holistic integration of metabolic pathways was performed (MicrobiomeAnalyst 2.0).
RESULTS: A total of one and two metabolite modules associated with the NP and FP were identified, respectively. Regarding fecal microbiome, three, one, and two modules for the NP, PP, and FP were identified, respectively. The rumen microbiome demonstrated two modules correlated with each of the groups under study. Metabolite and microbiome enrichment analyses revealed the main metabolic pathways associated with lipid and protein metabolism, and regulatory mechanisms. The correlation analyses performed between the host metabolome and fecal ASVs revealed 13 and 12 significant correlations for NP and FP, respectively. Regarding the rumen, 16 and 17 significant correlations were found for NP and FP, respectively. The NP holistic analysis was mainly associated with amino acid and methane metabolism. Glycerophospholipid and polyunsaturated fatty acid metabolism were over-represented in the FP group.
CONCLUSIONS: Prenatal nutrition significantly affected the plasma metabolome, fecal microbiome, and ruminal fluid microbiome of Nelore bulls, providing insights into key pathways in protein, lipid, and methane metabolism. These findings offer novel discoveries about the molecular mechanisms underlying the effects of prenatal nutrition.
CLINICAL TRIAL NUMBER: Not applicable.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Cattle
Female
*Metabolomics/methods
Pregnancy
*Metabolic Networks and Pathways
*Metagenomics/methods
Male
Metabolome
Rumen/microbiology
Microbiota
*Prenatal Nutritional Physiological Phenomena
*Animal Nutritional Physiological Phenomena
Gastrointestinal Microbiome
RevDate: 2025-04-10
CmpDate: 2025-04-10
Balance between bile acid conjugation and hydrolysis activity can alter outcomes of gut inflammation.
Nature communications, 16(1):3434.
Conjugated bile acids (BAs) are multi-functional detergents in the gastrointestinal (GI) tract produced by the liver enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) and by the microbiome from the acyltransferase activity of bile salt hydrolase (BSH). Humans with inflammatory bowel disease (IBD) have an enrichment in both host and microbially conjugated BAs (MCBAs), but their impacts on GI inflammation are not well understood. We investigated the role of host-conjugated BAs in a mouse model of colitis using a BAAT knockout background. Baat[-/-] KO mice have severe phenotypes in the colitis model that were rescued by supplementation with taurocholate (TCA). Gene expression and histology showed that this rescue was due to an improved epithelial barrier integrity and goblet cell function. However, metabolomics also showed that TCA supplementation resulted in extensive metabolism to secondary BAs. We therefore investigated the BSH activity of diverse gut bacteria on a panel of conjugated BAs and found broad hydrolytic capacity depending on the bacterium and the amino acid conjugate. The complexity of this microbial BA hydrolysis led to the exploration of bsh genes in metagenomic data from human IBD patients. Certain bsh sequences were enriched in people with Crohn's disease particularly that from Ruminococcus gnavus. This study shows that both host and microbially conjugated BAs may provide benefits to those with IBD, but this is dictated by a delicate balance between BA conjugation/deconjugation based on the bsh genes present.
Additional Links: PMID-40210868
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40210868,
year = {2025},
author = {Fu, Y and Guzior, DV and Okros, M and Bridges, C and Rosset, SL and González, CT and Martin, C and Karunarathne, H and Watson, VE and Quinn, RA},
title = {Balance between bile acid conjugation and hydrolysis activity can alter outcomes of gut inflammation.},
journal = {Nature communications},
volume = {16},
number = {1},
pages = {3434},
pmid = {40210868},
issn = {2041-1723},
support = {1R01DK140854//U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)/ ; },
mesh = {Animals ; *Bile Acids and Salts/metabolism ; Humans ; Gastrointestinal Microbiome/genetics ; Mice, Knockout ; Mice ; Amidohydrolases/metabolism/genetics ; Hydrolysis ; Acyltransferases/genetics/metabolism ; Taurocholic Acid/pharmacology/metabolism ; Disease Models, Animal ; *Colitis/metabolism/pathology/microbiology ; Male ; Inflammatory Bowel Diseases/metabolism/microbiology ; Female ; Mice, Inbred C57BL ; Clostridiales/metabolism/genetics ; Crohn Disease/metabolism/microbiology/genetics ; },
abstract = {Conjugated bile acids (BAs) are multi-functional detergents in the gastrointestinal (GI) tract produced by the liver enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) and by the microbiome from the acyltransferase activity of bile salt hydrolase (BSH). Humans with inflammatory bowel disease (IBD) have an enrichment in both host and microbially conjugated BAs (MCBAs), but their impacts on GI inflammation are not well understood. We investigated the role of host-conjugated BAs in a mouse model of colitis using a BAAT knockout background. Baat[-/-] KO mice have severe phenotypes in the colitis model that were rescued by supplementation with taurocholate (TCA). Gene expression and histology showed that this rescue was due to an improved epithelial barrier integrity and goblet cell function. However, metabolomics also showed that TCA supplementation resulted in extensive metabolism to secondary BAs. We therefore investigated the BSH activity of diverse gut bacteria on a panel of conjugated BAs and found broad hydrolytic capacity depending on the bacterium and the amino acid conjugate. The complexity of this microbial BA hydrolysis led to the exploration of bsh genes in metagenomic data from human IBD patients. Certain bsh sequences were enriched in people with Crohn's disease particularly that from Ruminococcus gnavus. This study shows that both host and microbially conjugated BAs may provide benefits to those with IBD, but this is dictated by a delicate balance between BA conjugation/deconjugation based on the bsh genes present.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Bile Acids and Salts/metabolism
Humans
Gastrointestinal Microbiome/genetics
Mice, Knockout
Mice
Amidohydrolases/metabolism/genetics
Hydrolysis
Acyltransferases/genetics/metabolism
Taurocholic Acid/pharmacology/metabolism
Disease Models, Animal
*Colitis/metabolism/pathology/microbiology
Male
Inflammatory Bowel Diseases/metabolism/microbiology
Female
Mice, Inbred C57BL
Clostridiales/metabolism/genetics
Crohn Disease/metabolism/microbiology/genetics
RevDate: 2025-04-11
CmpDate: 2025-04-11
Gut microbiota participates in polystyrene microplastics-induced defective implantation through impairing uterine receptivity.
Journal of environmental management, 380:124997.
Microplastics (MPs) are widespread in global ecosystems and could pose risks to human health. However, crucial information on the impact of MP exposure on female reproductive health remains insufficient. In this study, we constructed an MP-exposure mice model through oral administration of polystyrene microplastics (PS-MPs) and found that it resulted in impaired uterine receptivity and defective implantation. An accumulation of plastic particles was detected in MP mice intestines. Metagenomic sequencing of feces samples indicated a structural and functional alteration of gut microbiota. Alistipes played a prominent role in MP biodegradation, while among the biodegradable functional genes, ACSL made the greatest contribution. Both had a significant increase in MP group, suggesting a potential occurrence of ferroptosis. Ferroptosis, a form of programmed cell death, is closely associated with uterine receptivity impairment and defective implantation. We detected MDA contents and ferroptosis-related proteins, and the results indicated the activation of ferroptosis in the process. Our research is the first to elucidate that exposure to MPs impairs uterine receptivity and results in deficient implantation, while also providing initial evidence that gut microbiota plays a critical role in this process.
Additional Links: PMID-40101486
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40101486,
year = {2025},
author = {Sun, J and Geng, L and Zhou, D and Teng, X and Chen, M},
title = {Gut microbiota participates in polystyrene microplastics-induced defective implantation through impairing uterine receptivity.},
journal = {Journal of environmental management},
volume = {380},
number = {},
pages = {124997},
doi = {10.1016/j.jenvman.2025.124997},
pmid = {40101486},
issn = {1095-8630},
mesh = {*Gastrointestinal Microbiome/drug effects ; Animals ; Mice ; Female ; *Microplastics/toxicity ; *Polystyrenes/toxicity ; Uterus/drug effects ; },
abstract = {Microplastics (MPs) are widespread in global ecosystems and could pose risks to human health. However, crucial information on the impact of MP exposure on female reproductive health remains insufficient. In this study, we constructed an MP-exposure mice model through oral administration of polystyrene microplastics (PS-MPs) and found that it resulted in impaired uterine receptivity and defective implantation. An accumulation of plastic particles was detected in MP mice intestines. Metagenomic sequencing of feces samples indicated a structural and functional alteration of gut microbiota. Alistipes played a prominent role in MP biodegradation, while among the biodegradable functional genes, ACSL made the greatest contribution. Both had a significant increase in MP group, suggesting a potential occurrence of ferroptosis. Ferroptosis, a form of programmed cell death, is closely associated with uterine receptivity impairment and defective implantation. We detected MDA contents and ferroptosis-related proteins, and the results indicated the activation of ferroptosis in the process. Our research is the first to elucidate that exposure to MPs impairs uterine receptivity and results in deficient implantation, while also providing initial evidence that gut microbiota plays a critical role in this process.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Gastrointestinal Microbiome/drug effects
Animals
Mice
Female
*Microplastics/toxicity
*Polystyrenes/toxicity
Uterus/drug effects
RevDate: 2025-04-11
CmpDate: 2025-04-11
Dynamics of gut resistome and mobilome in early life: a meta-analysis.
EBioMedicine, 114:105630.
BACKGROUND: The gut microbiota of infants harbours a higher proportion of antibiotic resistance genes (ARGs) compared to adults, even in infants never exposed to antibiotics. Our study aims to elucidate this phenomenon by analysing how different perinatal factors influence the presence of ARGs, mobile genetic elements (MGEs), and their bacterial hosts in the infant gut.
METHODS: We searched MEDLINE and Embase up to April 3rd, 2023, for studies reporting infant cohorts with shotgun metagenomic sequencing of stool samples. The systematic search identified 14 longitudinal infant cohorts from 10 countries across three continents, featuring publicly available sequencing data with corresponding metadata. For subsequent integrative bioinformatic analyses, we used 3981 high-quality metagenomic samples from 1270 infants and 415 mothers.
FINDINGS: We identified distinct trajectories of the resistome and mobilome associated with birth mode, gestational age, antibiotic use, and geographical location. Geographical variation was exemplified by differences between cohorts from Europe, Southern Africa, and Northern America, which showed variation in both diversity and abundance of ARGs. On the other hand, we did not detect a significant impact of breastfeeding on the infants' gut resistome. More than half of detected ARGs co-localised with plasmids in key bacterial hosts, such as Escherichia coli and Enterococcus faecalis. These ARG-associated plasmids were gradually lost during infancy. We also demonstrate that E. coli role as a primary modulator of the infant gut resistome and mobilome is facilitated by its increased abundance and strain diversity compared to adults.
INTERPRETATION: Birth mode, gestational age, antibiotic exposure, and geographical location significantly influence the development of the infant gut resistome and mobilome. A reduction in E. coli relative abundance over time appears as a key factor driving the decrease in both resistome and plasmid relative abundance as infants grow.
FUNDING: Centre for Advanced Study in Oslo, Norway. Centre for New Antibacterial Strategies through the Tromsø Research Foundation, Norway.
Additional Links: PMID-40048849
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40048849,
year = {2025},
author = {Bargheet, A and Noordzij, HT and Ponsero, AJ and Jian, C and Korpela, K and Valles-Colomer, M and Debelius, J and Kurilshikov, A and Pettersen, VK},
title = {Dynamics of gut resistome and mobilome in early life: a meta-analysis.},
journal = {EBioMedicine},
volume = {114},
number = {},
pages = {105630},
pmid = {40048849},
issn = {2352-3964},
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; Infant ; Metagenomics/methods ; Infant, Newborn ; Anti-Bacterial Agents/pharmacology/therapeutic use ; Metagenome ; Female ; Interspersed Repetitive Sequences ; *Drug Resistance, Bacterial/genetics ; Computational Biology/methods ; },
abstract = {BACKGROUND: The gut microbiota of infants harbours a higher proportion of antibiotic resistance genes (ARGs) compared to adults, even in infants never exposed to antibiotics. Our study aims to elucidate this phenomenon by analysing how different perinatal factors influence the presence of ARGs, mobile genetic elements (MGEs), and their bacterial hosts in the infant gut.
METHODS: We searched MEDLINE and Embase up to April 3rd, 2023, for studies reporting infant cohorts with shotgun metagenomic sequencing of stool samples. The systematic search identified 14 longitudinal infant cohorts from 10 countries across three continents, featuring publicly available sequencing data with corresponding metadata. For subsequent integrative bioinformatic analyses, we used 3981 high-quality metagenomic samples from 1270 infants and 415 mothers.
FINDINGS: We identified distinct trajectories of the resistome and mobilome associated with birth mode, gestational age, antibiotic use, and geographical location. Geographical variation was exemplified by differences between cohorts from Europe, Southern Africa, and Northern America, which showed variation in both diversity and abundance of ARGs. On the other hand, we did not detect a significant impact of breastfeeding on the infants' gut resistome. More than half of detected ARGs co-localised with plasmids in key bacterial hosts, such as Escherichia coli and Enterococcus faecalis. These ARG-associated plasmids were gradually lost during infancy. We also demonstrate that E. coli role as a primary modulator of the infant gut resistome and mobilome is facilitated by its increased abundance and strain diversity compared to adults.
INTERPRETATION: Birth mode, gestational age, antibiotic exposure, and geographical location significantly influence the development of the infant gut resistome and mobilome. A reduction in E. coli relative abundance over time appears as a key factor driving the decrease in both resistome and plasmid relative abundance as infants grow.
FUNDING: Centre for Advanced Study in Oslo, Norway. Centre for New Antibacterial Strategies through the Tromsø Research Foundation, Norway.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
Infant
Metagenomics/methods
Infant, Newborn
Anti-Bacterial Agents/pharmacology/therapeutic use
Metagenome
Female
Interspersed Repetitive Sequences
*Drug Resistance, Bacterial/genetics
Computational Biology/methods
RevDate: 2025-04-11
CmpDate: 2025-04-11
Diversity, functions, and antibiotic resistance genes of bacteria and fungi are examined in the bamboo plant phyllosphere that serve as food for the giant pandas.
International microbiology : the official journal of the Spanish Society for Microbiology, 28(4):751-763.
The phyllosphere of bamboo is rich in microorganisms that can disrupt the intestinal microbiota of the giant pandas that consume them, potentially leading to their death. In the present study, the abundance, diversity, biological functions (e.g., KEGG and CAZyme), and antibiotic resistance genes (ARGs) of bacteria and fungi in two bamboo species phyllosphere (Chimonobambusa szechuanensis, CS; Bashania fangiana, BF) in Daxiangling Nature Reserve (an important part of the Giant Panda National Park) were investigated respectively by amplicon sequencing of the whole 16S rRNA and ITS1-ITS2 genes on PacBio Sequel and whole-metagenome shotgun sequencing on Illumina NovaSeq 6000 platform. The results suggested that there were respectively 18 bacterial and 34 fungi biomarkers between the phyllosphere of the two species of bamboo. Beta diversity of bacteria and fungi communities exited between the two bamboos according to the (un)weighted UniFrac distance matrix. Moreover, the functional analysis showed that the largest relative abundance was found in the genes related to metabolism and global and overview maps. Glycoside hydrolases (GHs) and glycosyl transferases (GTs) have a higher abundance in two bamboo phyllospheres. Co-occurrence network modeling suggested that bacteria and fungi communities in CS phyllosphere employed a much more complex metabolic network than that in BF, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was higher and closely correlated with other ARGs. This study references the basis for protecting bamboo resources foraged by wild giant pandas and predicts the risk of antibiotic resistance in bamboo phyllosphere bacterial and fungal microbiota in the Giant Panda National Park, China.
Additional Links: PMID-39168909
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid39168909,
year = {2025},
author = {Wang, X and Li, Y and Kang, L and Zhang, Z and Zhang, D and Li, P and Zhang, Q and Ma, X and Wang, J and Hou, Y and Li, Q and Fu, J and Hong, M},
title = {Diversity, functions, and antibiotic resistance genes of bacteria and fungi are examined in the bamboo plant phyllosphere that serve as food for the giant pandas.},
journal = {International microbiology : the official journal of the Spanish Society for Microbiology},
volume = {28},
number = {4},
pages = {751-763},
pmid = {39168909},
issn = {1618-1905},
support = {2019QZKK05010502//by the Second Qinghai-Tibet Plateau Comprehensive Scientific Survey/ ; KCXTD2022-7//the Innovation Team Funds of China West Normal University/ ; },
mesh = {*Ursidae/microbiology ; *Fungi/genetics/drug effects/classification/isolation & purification ; *Bacteria/genetics/drug effects/classification/isolation & purification ; Animals ; RNA, Ribosomal, 16S/genetics ; Anti-Bacterial Agents/pharmacology ; *Drug Resistance, Microbial/genetics ; *Poaceae/microbiology ; Biodiversity ; Gastrointestinal Microbiome ; },
abstract = {The phyllosphere of bamboo is rich in microorganisms that can disrupt the intestinal microbiota of the giant pandas that consume them, potentially leading to their death. In the present study, the abundance, diversity, biological functions (e.g., KEGG and CAZyme), and antibiotic resistance genes (ARGs) of bacteria and fungi in two bamboo species phyllosphere (Chimonobambusa szechuanensis, CS; Bashania fangiana, BF) in Daxiangling Nature Reserve (an important part of the Giant Panda National Park) were investigated respectively by amplicon sequencing of the whole 16S rRNA and ITS1-ITS2 genes on PacBio Sequel and whole-metagenome shotgun sequencing on Illumina NovaSeq 6000 platform. The results suggested that there were respectively 18 bacterial and 34 fungi biomarkers between the phyllosphere of the two species of bamboo. Beta diversity of bacteria and fungi communities exited between the two bamboos according to the (un)weighted UniFrac distance matrix. Moreover, the functional analysis showed that the largest relative abundance was found in the genes related to metabolism and global and overview maps. Glycoside hydrolases (GHs) and glycosyl transferases (GTs) have a higher abundance in two bamboo phyllospheres. Co-occurrence network modeling suggested that bacteria and fungi communities in CS phyllosphere employed a much more complex metabolic network than that in BF, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was higher and closely correlated with other ARGs. This study references the basis for protecting bamboo resources foraged by wild giant pandas and predicts the risk of antibiotic resistance in bamboo phyllosphere bacterial and fungal microbiota in the Giant Panda National Park, China.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Ursidae/microbiology
*Fungi/genetics/drug effects/classification/isolation & purification
*Bacteria/genetics/drug effects/classification/isolation & purification
Animals
RNA, Ribosomal, 16S/genetics
Anti-Bacterial Agents/pharmacology
*Drug Resistance, Microbial/genetics
*Poaceae/microbiology
Biodiversity
Gastrointestinal Microbiome
RevDate: 2025-04-10
CmpDate: 2025-04-10
Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut.
Nature communications, 16(1):3427.
Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 10[7] viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.
Additional Links: PMID-40210629
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40210629,
year = {2025},
author = {Park, JW and Yun, YE and Cho, JA and Yoon, SI and In, SA and Park, EJ and Kim, MS},
title = {Characterization of the phyllosphere virome of fresh vegetables and potential transfer to the human gut.},
journal = {Nature communications},
volume = {16},
number = {1},
pages = {3427},
pmid = {40210629},
issn = {2041-1723},
support = {2020R1A5A8017671//National Research Foundation of Korea (NRF)/ ; 2019R1C1C1009664//National Research Foundation of Korea (NRF)/ ; 2018R1D1A3B07050366//National Research Foundation of Korea (NRF)/ ; 2021R1F1A1064222//National Research Foundation of Korea (NRF)/ ; },
mesh = {Humans ; *Virome/genetics ; *Vegetables/virology ; *Gastrointestinal Microbiome/genetics ; Feces/virology ; *Plant Leaves/virology ; Metagenome ; Bacteriophages/genetics/classification/isolation & purification ; Phylogeny ; Metagenomics ; },
abstract = {Fresh vegetables harbor diverse microorganisms on leaf surfaces, yet their viral communities remain unexplored. We investigate the diversity and ecology of phyllosphere viromes of six leafy green vegetables using virus-like particle (VLP) enrichment and shotgun metagenome sequencing. On average, 9.2 × 10[7] viruses are present per gram of leaf tissue. The majority (93.1 ± 6.2%) of these viruses are taxonomically unclassified. Virome compositions are distinct among vegetable types and exhibit temporal variations. Virulent phages with replication-enhancing auxiliary metabolic genes (AMGs) are more dominant than temperate phages with host fitness-benefiting AMGs. Analysis of 1498 human fecal VLP metagenomes reveals that approximately 10% of vegetable viruses are present in the human gut virome, including viruses commonly observed in multiple studies. These gut-associated vegetable viruses are enriched with short-term vegetable intake, and depleted in individuals with metabolic and immunologic disorders. Overall, this study elucidates the ecological contribution of the fresh vegetable virome to human gut virome diversity.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Virome/genetics
*Vegetables/virology
*Gastrointestinal Microbiome/genetics
Feces/virology
*Plant Leaves/virology
Metagenome
Bacteriophages/genetics/classification/isolation & purification
Phylogeny
Metagenomics
RevDate: 2025-04-10
CmpDate: 2025-04-10
Exploring the evolution of microbial communities from the phyllosphere and carposphere to the grape must of Vitis vinifera L. cv's Chardonnay and Pinot noir.
Food microbiology, 130:104780.
Microbial communities associated with the grapevine phyllosphere and carposhere are a fundamental determinant of grape and wine quality. High throughput amplicon sequencing was used to profile the fungal and bacterial communities on the associated phylloplane and carposphere of Vitis vinifera L. cv's Chardonnay and Pinot noir in the Elgin and Hemel-en-Aarde wine districts of South Africa in the 2021-2022 growing season. The subsequent grape must was analysed to determine the prevalent microbiome. The most abundant bacterial and fungal genera found in both the phylloplane and carposphere of Chardonnay and Pinot noir were Pseudomonas and Filobasidium. The LEfSe (Linear discriminant analysis Effect Size) revealed significant differences in fungal and bacterial biomarkers from leaf, berry and grape must samples; however, no biomarkers were identified for cultivar nor location. Fungal β-diversity was significantly similar at different phenological stages, whereas bacterial β-diversity was significantly similar regardless of the site of colonisation. However, skin integrity of the grapes was may have influenced the microbial diversity.
Additional Links: PMID-40210403
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40210403,
year = {2025},
author = {Africa, AJ and Setati, ME and Hitzeroth, AC and Blancquaert, EH},
title = {Exploring the evolution of microbial communities from the phyllosphere and carposphere to the grape must of Vitis vinifera L. cv's Chardonnay and Pinot noir.},
journal = {Food microbiology},
volume = {130},
number = {},
pages = {104780},
doi = {10.1016/j.fm.2025.104780},
pmid = {40210403},
issn = {1095-9998},
mesh = {*Vitis/microbiology ; *Bacteria/classification/genetics/isolation & purification ; *Microbiota ; *Fungi/classification/genetics/isolation & purification ; *Plant Leaves/microbiology ; *Fruit/microbiology ; Wine/microbiology/analysis ; South Africa ; },
abstract = {Microbial communities associated with the grapevine phyllosphere and carposhere are a fundamental determinant of grape and wine quality. High throughput amplicon sequencing was used to profile the fungal and bacterial communities on the associated phylloplane and carposphere of Vitis vinifera L. cv's Chardonnay and Pinot noir in the Elgin and Hemel-en-Aarde wine districts of South Africa in the 2021-2022 growing season. The subsequent grape must was analysed to determine the prevalent microbiome. The most abundant bacterial and fungal genera found in both the phylloplane and carposphere of Chardonnay and Pinot noir were Pseudomonas and Filobasidium. The LEfSe (Linear discriminant analysis Effect Size) revealed significant differences in fungal and bacterial biomarkers from leaf, berry and grape must samples; however, no biomarkers were identified for cultivar nor location. Fungal β-diversity was significantly similar at different phenological stages, whereas bacterial β-diversity was significantly similar regardless of the site of colonisation. However, skin integrity of the grapes was may have influenced the microbial diversity.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Vitis/microbiology
*Bacteria/classification/genetics/isolation & purification
*Microbiota
*Fungi/classification/genetics/isolation & purification
*Plant Leaves/microbiology
*Fruit/microbiology
Wine/microbiology/analysis
South Africa
RevDate: 2025-04-10
CmpDate: 2025-04-10
Multi-cohort analysis reveals colorectal cancer tumor location-associated fecal microbiota and their clinical impact.
Cell host & microbe, 33(4):589-601.e3.
Microbial alterations in different tumor locations of colorectal cancer (CRC) remain unclear. Here, 1,375 fecal metagenomes from six in-house and published datasets were analyzed, including 128 right-sided CRC (rCRC), 168 left-sided CRC (lCRC), 250 rectal cancer (RC), and 829 controls. Firmicutes progressively increase from rCRC, lCRC, to RC, in contrast to the gradual decrease of Bacteroidetes. Tumor location-associated fecal microbes are identified, including Veillonella parvula for rCRC, Streptococcus angionosus for lCRC, and Peptostreptococcus anaerobius for RC, while Fusobacterium nucleatum is enriched in all tumor locations. Tumor location-associated bacteria correlate with patient survival. Clinically, we establish a microbial biomarker panel for each tumor location that accurately diagnoses rCRC (area under the receiver operating characteristic curve [AUC] = 91.59%), lCRC (AUC = 91.69%), or RC (AUC = 90.53%) from controls. Tumor location-specific biomarkers also have higher diagnostic accuracy (AUC = 91.38%) than location-non-specific biomarkers (AUC = 82.92%). Overall, we characterize fecal microbes associated with different CRC tumor locations, highlighting that tumor location should be considered in non-invasive diagnosis.
Additional Links: PMID-40209677
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40209677,
year = {2025},
author = {Lin, Y and Lau, HC and Liu, C and Ding, X and Sun, Y and Rong, J and Zhang, X and Wang, L and Yuan, K and Miao, Y and Wu, WK and Wong, SH and Sung, JJ and Yu, J},
title = {Multi-cohort analysis reveals colorectal cancer tumor location-associated fecal microbiota and their clinical impact.},
journal = {Cell host & microbe},
volume = {33},
number = {4},
pages = {589-601.e3},
doi = {10.1016/j.chom.2025.03.012},
pmid = {40209677},
issn = {1934-6069},
mesh = {Humans ; *Feces/microbiology ; *Colorectal Neoplasms/microbiology/pathology/diagnosis ; *Gastrointestinal Microbiome ; Cohort Studies ; Metagenome ; Male ; Female ; *Bacteria/classification/genetics/isolation & purification ; Middle Aged ; Aged ; Fusobacterium nucleatum/isolation & purification ; Biomarkers, Tumor ; ROC Curve ; },
abstract = {Microbial alterations in different tumor locations of colorectal cancer (CRC) remain unclear. Here, 1,375 fecal metagenomes from six in-house and published datasets were analyzed, including 128 right-sided CRC (rCRC), 168 left-sided CRC (lCRC), 250 rectal cancer (RC), and 829 controls. Firmicutes progressively increase from rCRC, lCRC, to RC, in contrast to the gradual decrease of Bacteroidetes. Tumor location-associated fecal microbes are identified, including Veillonella parvula for rCRC, Streptococcus angionosus for lCRC, and Peptostreptococcus anaerobius for RC, while Fusobacterium nucleatum is enriched in all tumor locations. Tumor location-associated bacteria correlate with patient survival. Clinically, we establish a microbial biomarker panel for each tumor location that accurately diagnoses rCRC (area under the receiver operating characteristic curve [AUC] = 91.59%), lCRC (AUC = 91.69%), or RC (AUC = 90.53%) from controls. Tumor location-specific biomarkers also have higher diagnostic accuracy (AUC = 91.38%) than location-non-specific biomarkers (AUC = 82.92%). Overall, we characterize fecal microbes associated with different CRC tumor locations, highlighting that tumor location should be considered in non-invasive diagnosis.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Feces/microbiology
*Colorectal Neoplasms/microbiology/pathology/diagnosis
*Gastrointestinal Microbiome
Cohort Studies
Metagenome
Male
Female
*Bacteria/classification/genetics/isolation & purification
Middle Aged
Aged
Fusobacterium nucleatum/isolation & purification
Biomarkers, Tumor
ROC Curve
RevDate: 2025-04-10
CmpDate: 2025-04-10
Metagenome-Based Characterization of the Gut Virome Signatures in Patients With Gout.
Journal of medical virology, 97(4):e70336.
The gut microbiome has been implicated in the development of autoimmune diseases, including gout. However, the role of the gut virome in gout pathogenesis remains underexplored. We employed a reference-dependent virome approach to analyze fecal metagenomic data from 102 gout patients (77 in the discovery cohort and 25 in the validation cohort) and 86 healthy controls (HCs) (63 and 23 in each cohort). A subset of gout patients in the discovery cohort provided longitudinal samples at Weeks 2, 4, and 24. Our analysis revealed significant alterations in the gut virome of gout patients, including reduced viral richness and shifts in viral family composition. Notably, Siphoviridae, Myoviridae, and Podoviridae were depleted, while Quimbyviridae, Retroviridae, and Schitoviridae were enriched in gout patients. We identified 359 viral operational taxonomic units (vOTUs) associated with gout. Enriched vOTUs in gout patients predominantly consisted of Fusobacteriaceae, Bacteroidaceae, and Selenomonadaceae phages, while control-enriched vOTUs included Ruminococcaceae, Oscillospiraceae, and Enterobacteriaceae phages. Longitudinal analysis revealed that a substantial proportion of these virome signatures remained stable over 6 months. Functional profiling highlighted the enrichment of viral auxiliary metabolic genes, suggesting potential metabolic interactions between viruses and host bacteria. Notably, gut virome signatures effectively discriminated gout patients from HCs, with high classification performance in the validation cohort. This study provides the first comprehensive characterization of the gut virome in gout, revealing its potential role in disease pathogenesis and highlighting virome-based signatures as promising biomarkers for gout diagnosis and future therapeutic strategies.
Additional Links: PMID-40207877
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40207877,
year = {2025},
author = {Huang, L and Chen, C and Meng, J and Yan, Q and Luo, G and Sha, S and Xing, Y and Liu, C and Xu, M and Zhao, L and Guo, S and Wu, X and Chen, H and Ma, J and You, W and Zhang, Y and Guo, R and Li, S and Yao, X and Ma, W and Kong, X and Zhou, P and Sun, W},
title = {Metagenome-Based Characterization of the Gut Virome Signatures in Patients With Gout.},
journal = {Journal of medical virology},
volume = {97},
number = {4},
pages = {e70336},
doi = {10.1002/jmv.70336},
pmid = {40207877},
issn = {1096-9071},
support = {//This study was supported by 2024 High-quality Development Project of Shenzhen Bao'an Public Hospital (BAGZL2024138 and BAGZL2024130), National Natural Science Foundation of China (82370563), Dalian Medical University Interdisciplinary Research Cooperation Project Team Funding (JCH22023017), the Key Laboratory of Guizhou Provincial Education Department (Guizhou Education Technology [2023] No. 017), National and Provincial Science and Technology Innovation Talent Team Cultivation Program of Guizhou University of Traditional Chinese Medicine (GZUTCM-TD[2022]004)./ ; },
mesh = {Humans ; *Virome ; *Gastrointestinal Microbiome ; *Gout/virology ; Male ; Middle Aged ; Feces/virology ; Female ; *Metagenome ; Metagenomics ; *Viruses/classification/genetics/isolation & purification ; Adult ; Aged ; Longitudinal Studies ; },
abstract = {The gut microbiome has been implicated in the development of autoimmune diseases, including gout. However, the role of the gut virome in gout pathogenesis remains underexplored. We employed a reference-dependent virome approach to analyze fecal metagenomic data from 102 gout patients (77 in the discovery cohort and 25 in the validation cohort) and 86 healthy controls (HCs) (63 and 23 in each cohort). A subset of gout patients in the discovery cohort provided longitudinal samples at Weeks 2, 4, and 24. Our analysis revealed significant alterations in the gut virome of gout patients, including reduced viral richness and shifts in viral family composition. Notably, Siphoviridae, Myoviridae, and Podoviridae were depleted, while Quimbyviridae, Retroviridae, and Schitoviridae were enriched in gout patients. We identified 359 viral operational taxonomic units (vOTUs) associated with gout. Enriched vOTUs in gout patients predominantly consisted of Fusobacteriaceae, Bacteroidaceae, and Selenomonadaceae phages, while control-enriched vOTUs included Ruminococcaceae, Oscillospiraceae, and Enterobacteriaceae phages. Longitudinal analysis revealed that a substantial proportion of these virome signatures remained stable over 6 months. Functional profiling highlighted the enrichment of viral auxiliary metabolic genes, suggesting potential metabolic interactions between viruses and host bacteria. Notably, gut virome signatures effectively discriminated gout patients from HCs, with high classification performance in the validation cohort. This study provides the first comprehensive characterization of the gut virome in gout, revealing its potential role in disease pathogenesis and highlighting virome-based signatures as promising biomarkers for gout diagnosis and future therapeutic strategies.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Virome
*Gastrointestinal Microbiome
*Gout/virology
Male
Middle Aged
Feces/virology
Female
*Metagenome
Metagenomics
*Viruses/classification/genetics/isolation & purification
Adult
Aged
Longitudinal Studies
RevDate: 2025-04-10
Exploring the diversity and antimicrobial potential of actinomycetes isolated from different environments in Saudi Arabia: a systematic review.
Frontiers in microbiology, 16:1568899.
The increasing prevalence of antimicrobial resistance (AMR) presents a significant global health challenge, underscoring the urgent need for novel antimicrobial agents. Actinomycetes, particularly Streptomyces species, are well known for synthesizing bioactive compounds with antibacterial, antifungal, and antiviral properties. This review explores the diversity and antimicrobial potential of actinomycetes from Saudi Arabia's unique ecosystems, including terrestrial (soil, rhizosphere), aquatic (marine, freshwater), extreme (deserts, caves, hot springs, mountains, and mangroves), and other unique environments. The adaptation of these microorganisms to harsh environmental conditions has driven the evolution of unique strains with enhanced biosynthetic capacities. Several studies have demonstrated their antimicrobial efficacy against multidrug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, Pseudomonas aeruginosa, and Candida albicans. However, challenges in actinomycete research persist, including difficulties in culturing rare strains, limited genomic characterization, and high production costs. Recent advancements, such as genome mining, metagenomics, AI-driven bioinformatics, and CRISPR-based gene activation, offer promising avenues for unlocking novel antimicrobial compounds. Additionally, synthetic biology, advanced fermentation technologies, and nanotechnology-based drug delivery systems are enhancing the industrial scalability of actinomycete-derived antibiotics. Beyond antimicrobials, actinomycete-derived compounds show potential applications in oncology, immunotherapy, and agriculture. Alternative therapeutic strategies, including quorum sensing inhibitors, phage therapy, and combination therapies, are being explored to combat AMR. Cutting-edge analytical techniques, such as mass spectrometry, liquid chromatography, and nuclear magnetic resonance spectroscopy (NMR), are essential for structural elucidation and mechanism characterization of new bioactive compounds. To harness Saudi Arabia's microbial biodiversity effectively, interdisciplinary collaborations between microbiologists, biotechnologists, and pharmaceutical industries are crucial. Sustainable bioprospecting and advanced bioprocessing strategies will facilitate the translation of actinomycete-derived bioactive compounds into clinically viable therapeutics. Expanding research efforts into underexplored Saudi ecosystems can lead to groundbreaking discoveries in antibiotic development and beyond.
Additional Links: PMID-40207161
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40207161,
year = {2025},
author = {Helmi, NR},
title = {Exploring the diversity and antimicrobial potential of actinomycetes isolated from different environments in Saudi Arabia: a systematic review.},
journal = {Frontiers in microbiology},
volume = {16},
number = {},
pages = {1568899},
pmid = {40207161},
issn = {1664-302X},
abstract = {The increasing prevalence of antimicrobial resistance (AMR) presents a significant global health challenge, underscoring the urgent need for novel antimicrobial agents. Actinomycetes, particularly Streptomyces species, are well known for synthesizing bioactive compounds with antibacterial, antifungal, and antiviral properties. This review explores the diversity and antimicrobial potential of actinomycetes from Saudi Arabia's unique ecosystems, including terrestrial (soil, rhizosphere), aquatic (marine, freshwater), extreme (deserts, caves, hot springs, mountains, and mangroves), and other unique environments. The adaptation of these microorganisms to harsh environmental conditions has driven the evolution of unique strains with enhanced biosynthetic capacities. Several studies have demonstrated their antimicrobial efficacy against multidrug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, Pseudomonas aeruginosa, and Candida albicans. However, challenges in actinomycete research persist, including difficulties in culturing rare strains, limited genomic characterization, and high production costs. Recent advancements, such as genome mining, metagenomics, AI-driven bioinformatics, and CRISPR-based gene activation, offer promising avenues for unlocking novel antimicrobial compounds. Additionally, synthetic biology, advanced fermentation technologies, and nanotechnology-based drug delivery systems are enhancing the industrial scalability of actinomycete-derived antibiotics. Beyond antimicrobials, actinomycete-derived compounds show potential applications in oncology, immunotherapy, and agriculture. Alternative therapeutic strategies, including quorum sensing inhibitors, phage therapy, and combination therapies, are being explored to combat AMR. Cutting-edge analytical techniques, such as mass spectrometry, liquid chromatography, and nuclear magnetic resonance spectroscopy (NMR), are essential for structural elucidation and mechanism characterization of new bioactive compounds. To harness Saudi Arabia's microbial biodiversity effectively, interdisciplinary collaborations between microbiologists, biotechnologists, and pharmaceutical industries are crucial. Sustainable bioprospecting and advanced bioprocessing strategies will facilitate the translation of actinomycete-derived bioactive compounds into clinically viable therapeutics. Expanding research efforts into underexplored Saudi ecosystems can lead to groundbreaking discoveries in antibiotic development and beyond.},
}
RevDate: 2025-04-10
CmpDate: 2025-04-10
Creatine-mediated ferroptosis inhibition is involved in the intestinal radioprotection of daytime-restricted feeding.
Gut microbes, 17(1):2489072.
Ionizing radiation-induced intestinal injury (IRIII) is a catastrophic disease lack of sufficient medical countermeasures currently. Regulation of the gut microbiota through dietary adjustments is a potential strategy to mitigate IRIII. Time-restricted feeding (TRF) is an emerging behavioral nutrition intervention with pleiotropic health benefits. Whether this dietary pattern influences the pathogenesis of IRIII remains vague. We evaluated the impact of TRF on intestinal radiosensitivity in this study and discovered that only daytime TRF (DTRF), not nighttime TRF, could ameliorate intestinal damage in mice that received a high dose of IR. Faecal metagenomic and metabolomic studies revealed that the intestinal creatine level was increased by approximate 9 times by DTRF, to which the Bifidobacterium pseudolongum enrichment contribute. Further investigations showed that creatine could activate the energy sensor AMP-activated protein kinase in irradiated enterocytes and induce phosphorylation of acetyl-CoA carboxylase, resulting in reduced production of polyunsaturated fatty acids and reduced ferroptosis after IR. The administration of creatine mitigated IRIII and reduced bacteremia and proinflammatory responses. Blockade of creatine import compromised the ferroptosis inhibition and mitigation of DTRF on IRIII. Our study demonstrates a radioprotective dietary mode that can reshape the gut microbiota and increase intestinal creatine, which can suppress IR-induced ferroptosis, thereby providing effective countermeasures for IRIII prevention.
Additional Links: PMID-40205678
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40205678,
year = {2025},
author = {He, Y and Zhao, G and Ouyang, X and Wang, S and Chen, Y and Li, C and He, Y and Gao, J and Han, S and Zhao, J and Wang, J and Wang, C},
title = {Creatine-mediated ferroptosis inhibition is involved in the intestinal radioprotection of daytime-restricted feeding.},
journal = {Gut microbes},
volume = {17},
number = {1},
pages = {2489072},
doi = {10.1080/19490976.2025.2489072},
pmid = {40205678},
issn = {1949-0984},
mesh = {Animals ; Mice ; Gastrointestinal Microbiome/drug effects/radiation effects ; *Creatine/metabolism/pharmacology/administration & dosage ; *Ferroptosis/drug effects/radiation effects ; Mice, Inbred C57BL ; Male ; *Intestines/radiation effects/microbiology ; *Radiation-Protective Agents/metabolism/administration & dosage ; Radiation, Ionizing ; Feces/microbiology ; Enterocytes/radiation effects/metabolism ; },
abstract = {Ionizing radiation-induced intestinal injury (IRIII) is a catastrophic disease lack of sufficient medical countermeasures currently. Regulation of the gut microbiota through dietary adjustments is a potential strategy to mitigate IRIII. Time-restricted feeding (TRF) is an emerging behavioral nutrition intervention with pleiotropic health benefits. Whether this dietary pattern influences the pathogenesis of IRIII remains vague. We evaluated the impact of TRF on intestinal radiosensitivity in this study and discovered that only daytime TRF (DTRF), not nighttime TRF, could ameliorate intestinal damage in mice that received a high dose of IR. Faecal metagenomic and metabolomic studies revealed that the intestinal creatine level was increased by approximate 9 times by DTRF, to which the Bifidobacterium pseudolongum enrichment contribute. Further investigations showed that creatine could activate the energy sensor AMP-activated protein kinase in irradiated enterocytes and induce phosphorylation of acetyl-CoA carboxylase, resulting in reduced production of polyunsaturated fatty acids and reduced ferroptosis after IR. The administration of creatine mitigated IRIII and reduced bacteremia and proinflammatory responses. Blockade of creatine import compromised the ferroptosis inhibition and mitigation of DTRF on IRIII. Our study demonstrates a radioprotective dietary mode that can reshape the gut microbiota and increase intestinal creatine, which can suppress IR-induced ferroptosis, thereby providing effective countermeasures for IRIII prevention.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Mice
Gastrointestinal Microbiome/drug effects/radiation effects
*Creatine/metabolism/pharmacology/administration & dosage
*Ferroptosis/drug effects/radiation effects
Mice, Inbred C57BL
Male
*Intestines/radiation effects/microbiology
*Radiation-Protective Agents/metabolism/administration & dosage
Radiation, Ionizing
Feces/microbiology
Enterocytes/radiation effects/metabolism
RevDate: 2025-04-09
Running against the clock: Exploring microbial diversity in an extremely endangered microbial oasis in the Chihuahuan Desert.
FEMS microbiology ecology pii:8109628 [Epub ahead of print].
The Cuatro Ciénegas Basin is a biodiversity hotspot known for its unique biodiversity. However, this ecosystem is facing severe anthropogenic threats that are drying its aquatic systems. We investigated microbial communities at three sites with different physicochemical and environmental characteristics (Pozas Rojas, Archean Domes, and the Churince system) within the basin to explore potential connections to deep aquifers and determine if the sites shared microorganisms. Utilizing 16S rRNA gene data, we identified a core microbiota between Pozas Rojas and Archean Domes. Sulfur reduction appears to shape the microbial connectivity among sites, since sulfur-reducing bacteria has the highest prevalence between samples from Pozas Rojas and Archean Domes: Halanaerobium sp. (88.46%) and Desulfovermiculus halophilus (65%); and between the Churince system and Archean Domes: Halanaerobium sp. (63%) and Desulfovermiculus halophilus (60%). Furthermore, metagenome assembled genomes from Ectothiorhodospira genus were found in both Archean Domes and Churince, suggesting microbial dispersal. An important finding is that microbial diversity in the Archean Domes system declined, from 2016 to 2023 the ecosystem lost 29 microbial phyla. If this trend continues, the basin will lose most of its water, resulting in the loss of various prokaryotic lineages and potential biotechnological solutions, such as enzymes or novel antibiotics. Our findings highlighting the need for water extraction regulations to preserve the basin's biodiversity.
Additional Links: PMID-40205473
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40205473,
year = {2025},
author = {Rodriguez-Cruz, UE and Ochoa-Sánchez, M and Eguiarte, LE and Souza, V},
title = {Running against the clock: Exploring microbial diversity in an extremely endangered microbial oasis in the Chihuahuan Desert.},
journal = {FEMS microbiology ecology},
volume = {},
number = {},
pages = {},
doi = {10.1093/femsec/fiaf033},
pmid = {40205473},
issn = {1574-6941},
abstract = {The Cuatro Ciénegas Basin is a biodiversity hotspot known for its unique biodiversity. However, this ecosystem is facing severe anthropogenic threats that are drying its aquatic systems. We investigated microbial communities at three sites with different physicochemical and environmental characteristics (Pozas Rojas, Archean Domes, and the Churince system) within the basin to explore potential connections to deep aquifers and determine if the sites shared microorganisms. Utilizing 16S rRNA gene data, we identified a core microbiota between Pozas Rojas and Archean Domes. Sulfur reduction appears to shape the microbial connectivity among sites, since sulfur-reducing bacteria has the highest prevalence between samples from Pozas Rojas and Archean Domes: Halanaerobium sp. (88.46%) and Desulfovermiculus halophilus (65%); and between the Churince system and Archean Domes: Halanaerobium sp. (63%) and Desulfovermiculus halophilus (60%). Furthermore, metagenome assembled genomes from Ectothiorhodospira genus were found in both Archean Domes and Churince, suggesting microbial dispersal. An important finding is that microbial diversity in the Archean Domes system declined, from 2016 to 2023 the ecosystem lost 29 microbial phyla. If this trend continues, the basin will lose most of its water, resulting in the loss of various prokaryotic lineages and potential biotechnological solutions, such as enzymes or novel antibiotics. Our findings highlighting the need for water extraction regulations to preserve the basin's biodiversity.},
}
RevDate: 2025-04-10
CmpDate: 2025-04-10
The interplay between Trypanosoma cruzi and the microbiome of Triatoma infestans: Implications for the host's immune response.
Acta tropica, 264:107577.
The infection dynamics of Trypanosoma cruzi is shaped by the parasite's genetics and interactions with host and vector factors. While most studies in the area use axenic parasite cultures devoid of insect fecal components, this study is focused on the immune response and the parasite loads generated after the interaction of T. cruzi with feces from Triatoma infestans in a murine model. First, using metagenomics, we analyzed the microbiota of infected and uninfected feces. Illumina sequencing of the 16S rRNA gene (V3-V4 region) revealed a predominance of the genus Arsenophonus in infected feces and of Enterococcus in uninfected ones. C57BL/6J mice inoculated with T. cruzi infected feces, displayed distinct immune responses compared to those inoculated with culture-derived metacyclic trypomastigotes alone, with lower levels of pro-inflammatory cytokines (IFN-ɣ, TNF-α) and higher amounts of IL-10, suggesting a regulatory response. Besides, total anti-T. cruzi IgG levels remained similar among groups, but IgG1 and IgG2c were reduced in the T. cruzi infected feces group, indicating a balanced Th1/Th2 response. Notably, mice inoculated with T. cruzi infected feces demonstrated significantly reduced blood and muscle parasite loads, potentially limiting inflammation and parasite dissemination. These findings highlight the possible role of vector fecal microbiota in shaping immune responses and influencing disease outcomes during natural T. cruzi infections.
Additional Links: PMID-40057258
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40057258,
year = {2025},
author = {Ragone, P and Parodi, C and Tomasini, N and Ramos, F and Uncos, A and Brandán, CP},
title = {The interplay between Trypanosoma cruzi and the microbiome of Triatoma infestans: Implications for the host's immune response.},
journal = {Acta tropica},
volume = {264},
number = {},
pages = {107577},
doi = {10.1016/j.actatropica.2025.107577},
pmid = {40057258},
issn = {1873-6254},
mesh = {Animals ; *Triatoma/microbiology/parasitology/immunology ; *Trypanosoma cruzi/immunology ; Feces/microbiology/parasitology ; Mice, Inbred C57BL ; Mice ; *Chagas Disease/immunology/parasitology ; RNA, Ribosomal, 16S/genetics ; Cytokines ; Female ; Disease Models, Animal ; *Microbiota ; Parasite Load ; Metagenomics ; Immunoglobulin G/blood ; },
abstract = {The infection dynamics of Trypanosoma cruzi is shaped by the parasite's genetics and interactions with host and vector factors. While most studies in the area use axenic parasite cultures devoid of insect fecal components, this study is focused on the immune response and the parasite loads generated after the interaction of T. cruzi with feces from Triatoma infestans in a murine model. First, using metagenomics, we analyzed the microbiota of infected and uninfected feces. Illumina sequencing of the 16S rRNA gene (V3-V4 region) revealed a predominance of the genus Arsenophonus in infected feces and of Enterococcus in uninfected ones. C57BL/6J mice inoculated with T. cruzi infected feces, displayed distinct immune responses compared to those inoculated with culture-derived metacyclic trypomastigotes alone, with lower levels of pro-inflammatory cytokines (IFN-ɣ, TNF-α) and higher amounts of IL-10, suggesting a regulatory response. Besides, total anti-T. cruzi IgG levels remained similar among groups, but IgG1 and IgG2c were reduced in the T. cruzi infected feces group, indicating a balanced Th1/Th2 response. Notably, mice inoculated with T. cruzi infected feces demonstrated significantly reduced blood and muscle parasite loads, potentially limiting inflammation and parasite dissemination. These findings highlight the possible role of vector fecal microbiota in shaping immune responses and influencing disease outcomes during natural T. cruzi infections.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Triatoma/microbiology/parasitology/immunology
*Trypanosoma cruzi/immunology
Feces/microbiology/parasitology
Mice, Inbred C57BL
Mice
*Chagas Disease/immunology/parasitology
RNA, Ribosomal, 16S/genetics
Cytokines
Female
Disease Models, Animal
*Microbiota
Parasite Load
Metagenomics
Immunoglobulin G/blood
RevDate: 2025-04-10
CmpDate: 2025-04-10
Structural characteristics of intestinal microbiota of domestic ducks with different body sizes.
Poultry science, 104(4):104930.
Domestic ducks are economically important agricultural animals, and their body size is a crucial economic trait. The intestinal flora plays a pivotal role in influencing body metabolism, growth, and development. Currently, no literature is available on the potential effect of the intestinal flora of domestic ducks on body size. This study used 16S rRNA sequencing technology to investigate the fecal microbiota of 229 individuals reared under identical feeding conditions. The findings revealed that partridge ducks with large body sizes (LBS) exhibited a higher level of intestinal microbial diversity than ducks with small body sizes (SBS). Notably, the gut microbiota composition of SBS displayed significantly elevated proportions of Streptococcus, Rothia, and Psychrobacter compared to their counterparts with LBS. Conversely, Lactobacillus was significantly more abundant in LBS. Jeotgalibaca and Psychrobacter were identified as key biomarkers of SBS, whereas Lactobacillus and Bacteroides were predominant biomarkers of LBS. Functional predictions based on intestinal microbiota indicated discernible differences among different body types, particularly evident in non- partridge ducks. The present study investigated the correlation between the intestinal microbiota and body size of domestic ducks, aiming to provide practical insights for the production management of domestic duck farming.
Additional Links: PMID-40056781
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40056781,
year = {2025},
author = {Chen, H and Li, J and Wu, Y and Li, Y and Zheng, S and Wu, Y and Xuan, R and Wu, L and Miao, J and Wang, Y and Tan, H and Zhou, J and Huang, J and Yan, X},
title = {Structural characteristics of intestinal microbiota of domestic ducks with different body sizes.},
journal = {Poultry science},
volume = {104},
number = {4},
pages = {104930},
pmid = {40056781},
issn = {1525-3171},
mesh = {Animals ; *Ducks/microbiology/anatomy & histology/physiology ; *Gastrointestinal Microbiome ; RNA, Ribosomal, 16S/analysis ; *Body Size ; *Bacteria/classification/isolation & purification/genetics ; Feces/microbiology ; Male ; },
abstract = {Domestic ducks are economically important agricultural animals, and their body size is a crucial economic trait. The intestinal flora plays a pivotal role in influencing body metabolism, growth, and development. Currently, no literature is available on the potential effect of the intestinal flora of domestic ducks on body size. This study used 16S rRNA sequencing technology to investigate the fecal microbiota of 229 individuals reared under identical feeding conditions. The findings revealed that partridge ducks with large body sizes (LBS) exhibited a higher level of intestinal microbial diversity than ducks with small body sizes (SBS). Notably, the gut microbiota composition of SBS displayed significantly elevated proportions of Streptococcus, Rothia, and Psychrobacter compared to their counterparts with LBS. Conversely, Lactobacillus was significantly more abundant in LBS. Jeotgalibaca and Psychrobacter were identified as key biomarkers of SBS, whereas Lactobacillus and Bacteroides were predominant biomarkers of LBS. Functional predictions based on intestinal microbiota indicated discernible differences among different body types, particularly evident in non- partridge ducks. The present study investigated the correlation between the intestinal microbiota and body size of domestic ducks, aiming to provide practical insights for the production management of domestic duck farming.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Ducks/microbiology/anatomy & histology/physiology
*Gastrointestinal Microbiome
RNA, Ribosomal, 16S/analysis
*Body Size
*Bacteria/classification/isolation & purification/genetics
Feces/microbiology
Male
RevDate: 2025-04-10
CmpDate: 2025-04-10
Alpha-aminobutyric acid administration suppressed visceral obesity and modulated hepatic oxidized PUFA metabolism via gut microbiota modulation.
Free radical biology & medicine, 232:86-96.
BACKGROUND: High-fat diet (HFD) is associated with visceral obesity due to disruption in the lipid metabolism and gut dysbiosis. These symptoms may contribute to hepatic steatosis and the formation of oxidized polyunsaturated fatty acids (PUFAs). Alpha-aminobutyric acid (ABA) is an amino-acid derived metabolite, and its concentration has been correlated with several metabolic conditions and gut microbiome diversity while its direct effects on visceral obesity, lipid metabolism and the gut microbiota are not well understood. This study was designed to investigate the effect of physiological dose of ABA on diet-induced visceral obesity and lipid metabolism dysregulation by examining the fatty acids and oxidized PUFAs profile in the liver as well as the gut microbiota.
RESULTS: ABA administration reduced visceral obesity by 28 % and lessened adipocyte hypertrophy. The expression of liver Cd36 was lowered by more than 50 % as well as the saturated and monounsaturated FA concentration. Notably, the desaturation index for C16 and C18 FAs that are correlated with adiposity were reduced. The concentration of several DHA-derived oxidized PUFAs were also enhanced. Faecal metagenomics sequencing revealed enriched abundance of Leptogranulimonas caecicola and Bacteroides sp. ZJ-18 and were positively correlated with several DHA- and ALA-derived oxidized PUFAs in ABA group.
CONCLUSION: Our study revealed the modulatory effect of physiological dose of ABA on attenuating visceral obesity, reducing hepatic steatosis, and promoting the production of anti-inflammatory oxidized PUFAs that were potentially mediated by the gut microbiota.
Additional Links: PMID-40032028
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40032028,
year = {2025},
author = {Ismaiah, MJ and Lo, EKK and Chen, C and Tsui, JS and Johnson-Hill, WA and Felicianna, and Zhang, F and Leung, HKM and Oger, C and Durand, T and Lee, JC and El-Nezami, H},
title = {Alpha-aminobutyric acid administration suppressed visceral obesity and modulated hepatic oxidized PUFA metabolism via gut microbiota modulation.},
journal = {Free radical biology & medicine},
volume = {232},
number = {},
pages = {86-96},
doi = {10.1016/j.freeradbiomed.2025.02.029},
pmid = {40032028},
issn = {1873-4596},
mesh = {*Gastrointestinal Microbiome/drug effects ; Animals ; *Fatty Acids, Unsaturated/metabolism ; Diet, High-Fat/adverse effects ; *Liver/metabolism/drug effects/pathology ; Male ; *Obesity, Abdominal/drug therapy/metabolism/microbiology/pathology ; Lipid Metabolism/drug effects ; Mice ; Oxidation-Reduction ; Mice, Inbred C57BL ; },
abstract = {BACKGROUND: High-fat diet (HFD) is associated with visceral obesity due to disruption in the lipid metabolism and gut dysbiosis. These symptoms may contribute to hepatic steatosis and the formation of oxidized polyunsaturated fatty acids (PUFAs). Alpha-aminobutyric acid (ABA) is an amino-acid derived metabolite, and its concentration has been correlated with several metabolic conditions and gut microbiome diversity while its direct effects on visceral obesity, lipid metabolism and the gut microbiota are not well understood. This study was designed to investigate the effect of physiological dose of ABA on diet-induced visceral obesity and lipid metabolism dysregulation by examining the fatty acids and oxidized PUFAs profile in the liver as well as the gut microbiota.
RESULTS: ABA administration reduced visceral obesity by 28 % and lessened adipocyte hypertrophy. The expression of liver Cd36 was lowered by more than 50 % as well as the saturated and monounsaturated FA concentration. Notably, the desaturation index for C16 and C18 FAs that are correlated with adiposity were reduced. The concentration of several DHA-derived oxidized PUFAs were also enhanced. Faecal metagenomics sequencing revealed enriched abundance of Leptogranulimonas caecicola and Bacteroides sp. ZJ-18 and were positively correlated with several DHA- and ALA-derived oxidized PUFAs in ABA group.
CONCLUSION: Our study revealed the modulatory effect of physiological dose of ABA on attenuating visceral obesity, reducing hepatic steatosis, and promoting the production of anti-inflammatory oxidized PUFAs that were potentially mediated by the gut microbiota.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Gastrointestinal Microbiome/drug effects
Animals
*Fatty Acids, Unsaturated/metabolism
Diet, High-Fat/adverse effects
*Liver/metabolism/drug effects/pathology
Male
*Obesity, Abdominal/drug therapy/metabolism/microbiology/pathology
Lipid Metabolism/drug effects
Mice
Oxidation-Reduction
Mice, Inbred C57BL
RevDate: 2025-04-10
CmpDate: 2025-04-10
Gut microbiota metabolism of branched-chain amino acids and their metabolites can improve the physiological function of aging mice.
Aging cell, 24(4):e14434.
The metabolism of branched-chain amino acids by gut microbiota can improve overall health and may reverse aging. In this study, we investigated Parabacteroides merdae, a gut microbe that is known to catabolise branched-chain amino acids (BCAAs). Three metabolites of BCAAs isovalerate, 2-methylbutyrate, and isobutyrate were used to treat D-gal induced aging mice. The results showed that these treatments could delay aging in mice by providing health benefits in reducing oxidative stress and inflammation, improving muscle capacity, reversing brain acetylcholine levels, and regulating blood glucose. The mechanism was preliminarily explored by combining the gut microbiota metagenome and faecal serum metabolome. Parabacteroides merdae altered the species composition and structure of the gut microbiota in mice. Increasing the abundance of beneficial bacteria, such as Bifidobacterium pseudolongum. Three metabolites affects the gut microbiota and the body's pathways of protein and improves the overall health through a variety of signaling pathways. Overall, regulating the gut microbiota involved in branched-chain amino acid metabolism to bring health benefits may be a new way of reversing aging.
Additional Links: PMID-39628383
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid39628383,
year = {2025},
author = {Wang, H and Feng, L and Pei, Z and Zhao, J and Lu, S and Lu, W},
title = {Gut microbiota metabolism of branched-chain amino acids and their metabolites can improve the physiological function of aging mice.},
journal = {Aging cell},
volume = {24},
number = {4},
pages = {e14434},
doi = {10.1111/acel.14434},
pmid = {39628383},
issn = {1474-9726},
support = {2022YFF1100403//National Key Research and Development Program of China/ ; HB2023003//Top Talent Support Program for young and middle-aged people of Wuxi Health Committee/ ; },
mesh = {Animals ; *Gastrointestinal Microbiome/physiology ; *Amino Acids, Branched-Chain/metabolism ; Mice ; *Aging/metabolism/drug effects ; Mice, Inbred C57BL ; Male ; },
abstract = {The metabolism of branched-chain amino acids by gut microbiota can improve overall health and may reverse aging. In this study, we investigated Parabacteroides merdae, a gut microbe that is known to catabolise branched-chain amino acids (BCAAs). Three metabolites of BCAAs isovalerate, 2-methylbutyrate, and isobutyrate were used to treat D-gal induced aging mice. The results showed that these treatments could delay aging in mice by providing health benefits in reducing oxidative stress and inflammation, improving muscle capacity, reversing brain acetylcholine levels, and regulating blood glucose. The mechanism was preliminarily explored by combining the gut microbiota metagenome and faecal serum metabolome. Parabacteroides merdae altered the species composition and structure of the gut microbiota in mice. Increasing the abundance of beneficial bacteria, such as Bifidobacterium pseudolongum. Three metabolites affects the gut microbiota and the body's pathways of protein and improves the overall health through a variety of signaling pathways. Overall, regulating the gut microbiota involved in branched-chain amino acid metabolism to bring health benefits may be a new way of reversing aging.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Gastrointestinal Microbiome/physiology
*Amino Acids, Branched-Chain/metabolism
Mice
*Aging/metabolism/drug effects
Mice, Inbred C57BL
Male
RevDate: 2025-04-09
CmpDate: 2025-04-09
Progression of gut microbiome in preterm infants during the first three months.
Scientific reports, 15(1):12104.
The colonization and evolution of gut microbiota early in life play a vital role in shaping a healthy, robust immune system for infant health, whether in combating short-term illness or improving long-term health outcomes. Early-life clinical practices may interrupt or disrupt the normal colonization process of the infant gut microbiota, thereby increasing disease susceptibility. In this prospective cohort study, we analyzed the gut microbiota of 46 term and 23 preterm infants using 16S rRNA gene metagenomic sequencing. Fecal samples were collected at six timepoints during the first three months of life. Notably, gestational age was the main factor contributing to differences in the meconium microbial composition. Intriguingly, our study unveiled a more homogeneous microbial composition in preterm infants with more abundant Bifidobacterium from the postnatal age (PNA) of one month. Concurrently, the beneficial bacteria Bifidobacterium and Lactobacillus gradually increased, and the potentially pathogenic bacteria Clostridium, Enterobacter, Enterococcus, Klebsiella, and Pseudomonas gradually decreased. Furthermore, our study underscored a link between decreased microbial diversity of preterm infants and exclusive breastfeeding and antibiotic exposure. Moreover, preterm infants with patent ductus arteriosus (PDA) exhibited reduced microbial diversity but higher abundances of Streptococcus oralis and Streptococcus mitis.
Additional Links: PMID-40204761
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40204761,
year = {2025},
author = {Li, F and Hooi, SL and Choo, YM and Teh, CSJ and Toh, KY and Lim, LWZ and Lee, YQ and Chong, CW and Ahmad Kamar, A},
title = {Progression of gut microbiome in preterm infants during the first three months.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {12104},
pmid = {40204761},
issn = {2045-2322},
support = {IF047-2021//International Funding/ ; },
mesh = {Humans ; *Gastrointestinal Microbiome/genetics ; *Infant, Premature ; Infant, Newborn ; RNA, Ribosomal, 16S/genetics ; Feces/microbiology ; Female ; Male ; Prospective Studies ; *Bacteria/genetics/classification ; Infant ; Gestational Age ; Bifidobacterium/genetics/isolation & purification ; Meconium/microbiology ; Metagenomics ; },
abstract = {The colonization and evolution of gut microbiota early in life play a vital role in shaping a healthy, robust immune system for infant health, whether in combating short-term illness or improving long-term health outcomes. Early-life clinical practices may interrupt or disrupt the normal colonization process of the infant gut microbiota, thereby increasing disease susceptibility. In this prospective cohort study, we analyzed the gut microbiota of 46 term and 23 preterm infants using 16S rRNA gene metagenomic sequencing. Fecal samples were collected at six timepoints during the first three months of life. Notably, gestational age was the main factor contributing to differences in the meconium microbial composition. Intriguingly, our study unveiled a more homogeneous microbial composition in preterm infants with more abundant Bifidobacterium from the postnatal age (PNA) of one month. Concurrently, the beneficial bacteria Bifidobacterium and Lactobacillus gradually increased, and the potentially pathogenic bacteria Clostridium, Enterobacter, Enterococcus, Klebsiella, and Pseudomonas gradually decreased. Furthermore, our study underscored a link between decreased microbial diversity of preterm infants and exclusive breastfeeding and antibiotic exposure. Moreover, preterm infants with patent ductus arteriosus (PDA) exhibited reduced microbial diversity but higher abundances of Streptococcus oralis and Streptococcus mitis.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Gastrointestinal Microbiome/genetics
*Infant, Premature
Infant, Newborn
RNA, Ribosomal, 16S/genetics
Feces/microbiology
Female
Male
Prospective Studies
*Bacteria/genetics/classification
Infant
Gestational Age
Bifidobacterium/genetics/isolation & purification
Meconium/microbiology
Metagenomics
RevDate: 2025-04-09
CmpDate: 2025-04-09
Effects of Different Feeding Patterns on the Gut Virome of 6-Month-Old Infants.
Journal of medical virology, 97(4):e70344.
The gut microbiome is essential for infant health, and in recent years, the impact of enteroviruses on infant health and disease has received increasing attention. The transmission of breast milk phages to the infant gastrointestinal tract contributes to the shaping of the infant gut virome, while breastfeeding regulates the colonization of the infant gut virome. In this study, we collected fecal samples from healthy infants and analyzed the distribution characteristics of infant viral communities by viral metagenomic analysis, and analyzed the differences in infant viral communities under different feeding practices. Our results indicate that the infant intestinal virome consists of phages and eukaryotic viruses. Caudovirales and Microviridae dominated the phage composition, and except for Siphoviridae, which was more predominant in the intestines of formula-fed infants, there were no significant differences in the overall abundance of other Caudovirales and Microviridae in the intestines of infants with different feeding patterns. Breastfeeding can lead to a higher diversity of infant gut viruses through vertical transmission, and a highly diverse gut virome helps maintain the maturation of the gut microbiome. This study informs the shaping of gut virome in healthy infants by breastfeeding and contributes to further research on infant gut virome characteristics and formation processes.
Additional Links: PMID-40202375
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40202375,
year = {2025},
author = {Pan, C and Xu, P and Yuan, M and Wei, S and Lu, Y and Lu, H and Zhang, W},
title = {Effects of Different Feeding Patterns on the Gut Virome of 6-Month-Old Infants.},
journal = {Journal of medical virology},
volume = {97},
number = {4},
pages = {e70344},
doi = {10.1002/jmv.70344},
pmid = {40202375},
issn = {1096-9071},
support = {//This study was supported by the Zhenjiang Science and Technology Innovation Funds-Clinical Medicine Key Laboratory and Scientific Research Project of Health Commission of Jiangsu Province./ ; },
mesh = {Humans ; Infant ; *Gastrointestinal Microbiome ; *Virome ; Feces/virology ; *Breast Feeding ; Female ; Male ; *Viruses/classification/genetics/isolation & purification ; Metagenomics ; *Feeding Behavior ; Bacteriophages/genetics/classification/isolation & purification ; Milk, Human/virology ; *Gastrointestinal Tract/virology ; },
abstract = {The gut microbiome is essential for infant health, and in recent years, the impact of enteroviruses on infant health and disease has received increasing attention. The transmission of breast milk phages to the infant gastrointestinal tract contributes to the shaping of the infant gut virome, while breastfeeding regulates the colonization of the infant gut virome. In this study, we collected fecal samples from healthy infants and analyzed the distribution characteristics of infant viral communities by viral metagenomic analysis, and analyzed the differences in infant viral communities under different feeding practices. Our results indicate that the infant intestinal virome consists of phages and eukaryotic viruses. Caudovirales and Microviridae dominated the phage composition, and except for Siphoviridae, which was more predominant in the intestines of formula-fed infants, there were no significant differences in the overall abundance of other Caudovirales and Microviridae in the intestines of infants with different feeding patterns. Breastfeeding can lead to a higher diversity of infant gut viruses through vertical transmission, and a highly diverse gut virome helps maintain the maturation of the gut microbiome. This study informs the shaping of gut virome in healthy infants by breastfeeding and contributes to further research on infant gut virome characteristics and formation processes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
Infant
*Gastrointestinal Microbiome
*Virome
Feces/virology
*Breast Feeding
Female
Male
*Viruses/classification/genetics/isolation & purification
Metagenomics
*Feeding Behavior
Bacteriophages/genetics/classification/isolation & purification
Milk, Human/virology
*Gastrointestinal Tract/virology
RevDate: 2025-04-09
The impact of elevated temperature and salinity on microbial communities and food selectivity in heterotrophic nanoflagellates in the Boye River.
ISME communications, 5(1):ycaf049.
Microbial predator-prey interactions play a crucial role in aquatic food webs. Bacterivorous protists not only regulate the quantity and biomass of bacterial populations but also profoundly influence the structure of bacterial communities. Consequently, alterations in both the quantity and quality of protist bacterivory can influence the overall structure of aquatic food webs. While it is well-documented that changes in environmental conditions or the occurrence of abiotic stressors can lead to shifts in microbial community compositions, the impact of such disturbances on food selection remains unknown. Here, we investigated the effects of elevated temperature and salinization on food selectivity of heterotrophic nanoflagellates by monitoring the uptake of preselected target bacteria via catalyzed reporter deposition fluorescence in situ hybridization and fluorescence microscopy. Our results indicate that salinization, but not increased temperature, significantly increased the flagellates' selection against Microbacterium lacusdiani (Actinomycetota). However, the effect of the reduced grazing pressure was counterbalanced by the negative effect of increased salinity on the growth of Actinomycetota. Our results suggest that the effect of stressors on the feeding behavior of protistan predators may strongly affect the composition of their prey community, when bacterial taxa are concerned that are less sensitive to the particular stressor.
Additional Links: PMID-40201423
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40201423,
year = {2025},
author = {Boden, L and Bludau, D and Sieber, G and Deep, A and Baikova, D and David, GM and Hadžiomerović, U and Stach, TL and Boenigk, J},
title = {The impact of elevated temperature and salinity on microbial communities and food selectivity in heterotrophic nanoflagellates in the Boye River.},
journal = {ISME communications},
volume = {5},
number = {1},
pages = {ycaf049},
pmid = {40201423},
issn = {2730-6151},
abstract = {Microbial predator-prey interactions play a crucial role in aquatic food webs. Bacterivorous protists not only regulate the quantity and biomass of bacterial populations but also profoundly influence the structure of bacterial communities. Consequently, alterations in both the quantity and quality of protist bacterivory can influence the overall structure of aquatic food webs. While it is well-documented that changes in environmental conditions or the occurrence of abiotic stressors can lead to shifts in microbial community compositions, the impact of such disturbances on food selection remains unknown. Here, we investigated the effects of elevated temperature and salinization on food selectivity of heterotrophic nanoflagellates by monitoring the uptake of preselected target bacteria via catalyzed reporter deposition fluorescence in situ hybridization and fluorescence microscopy. Our results indicate that salinization, but not increased temperature, significantly increased the flagellates' selection against Microbacterium lacusdiani (Actinomycetota). However, the effect of the reduced grazing pressure was counterbalanced by the negative effect of increased salinity on the growth of Actinomycetota. Our results suggest that the effect of stressors on the feeding behavior of protistan predators may strongly affect the composition of their prey community, when bacterial taxa are concerned that are less sensitive to the particular stressor.},
}
RevDate: 2025-04-08
CmpDate: 2025-04-08
Thermal Stress and Its Effects on the Gut Microbiome of Parthenium Beetles.
Archives of insect biochemistry and physiology, 118(4):e70058.
The gut microbiota plays a vital role in nutrient and energy utilization, as well as in the host's ability to adapt its immune system to environmental changes. As a biological control agent for the invasive Parthenium weed, the Parthenium beetle Zygogramma bicolorata (Z. bicolorata) Pallister is often exposed to fluctuating temperatures, which may induce stress in its natural habitat. This study utilized 16S amplicon sequencing to explore the impact of temperature stress on the gut microbiome of Z. bicolorata under cold (15°C), control (27°C), and hot (35°C) conditions. A total of 11 bacterial phyla and 149 genera were identified, with Firmicutes, Proteobacteria, and Cyanobacteria being the most abundant. Temperature treatments significantly influenced the diversity of the gut microbiota, as evidenced by alpha diversity measures. Principal coordinate analysis further revealed substantial variations in microbiome composition across the different temperature conditions. Additionally, PICRUSt2 analysis suggested that the gut microbiota is linked to metagenomic functions related to amino acid and carbohydrate transport, inorganic ion metabolism, and cellular processes. Our findings suggest that thermal stress alters the gut microbiome of Parthenium beetles, offering new insights into how these beetles may have ecologically adapted to temperature fluctuations, while also highlighting the potential role of gut microbes in maintaining beetle health under environmental stress.
Additional Links: PMID-40199830
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40199830,
year = {2025},
author = {Singh, P and Haldhar, P and Das, T and Chaubey, G and Gupta, MK and Kumar, B},
title = {Thermal Stress and Its Effects on the Gut Microbiome of Parthenium Beetles.},
journal = {Archives of insect biochemistry and physiology},
volume = {118},
number = {4},
pages = {e70058},
doi = {10.1002/arch.70058},
pmid = {40199830},
issn = {1520-6327},
support = {//The authors received no specific funding for this work./ ; },
mesh = {Animals ; *Coleoptera/microbiology/physiology ; *Gastrointestinal Microbiome ; *Stress, Physiological ; Bacteria/classification/isolation & purification/genetics ; Hot Temperature ; RNA, Ribosomal, 16S/analysis ; },
abstract = {The gut microbiota plays a vital role in nutrient and energy utilization, as well as in the host's ability to adapt its immune system to environmental changes. As a biological control agent for the invasive Parthenium weed, the Parthenium beetle Zygogramma bicolorata (Z. bicolorata) Pallister is often exposed to fluctuating temperatures, which may induce stress in its natural habitat. This study utilized 16S amplicon sequencing to explore the impact of temperature stress on the gut microbiome of Z. bicolorata under cold (15°C), control (27°C), and hot (35°C) conditions. A total of 11 bacterial phyla and 149 genera were identified, with Firmicutes, Proteobacteria, and Cyanobacteria being the most abundant. Temperature treatments significantly influenced the diversity of the gut microbiota, as evidenced by alpha diversity measures. Principal coordinate analysis further revealed substantial variations in microbiome composition across the different temperature conditions. Additionally, PICRUSt2 analysis suggested that the gut microbiota is linked to metagenomic functions related to amino acid and carbohydrate transport, inorganic ion metabolism, and cellular processes. Our findings suggest that thermal stress alters the gut microbiome of Parthenium beetles, offering new insights into how these beetles may have ecologically adapted to temperature fluctuations, while also highlighting the potential role of gut microbes in maintaining beetle health under environmental stress.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Coleoptera/microbiology/physiology
*Gastrointestinal Microbiome
*Stress, Physiological
Bacteria/classification/isolation & purification/genetics
Hot Temperature
RNA, Ribosomal, 16S/analysis
RevDate: 2025-04-08
Optimizing fungal DNA extraction and purification for Oxford Nanopore untargeted shotgun metagenomic sequencing from simulated hemoculture specimens.
mSystems [Epub ahead of print].
UNLABELLED: Long-read metagenomics provides a promising alternative approach to fungal identification, circumventing methodological biases, associated with DNA amplification, which is a prerequisite for DNA barcoding/metabarcoding based on the primary fungal DNA barcode (Internal Transcribed Spacer (ITS) region). However, DNA extraction for long-read sequencing-based fungal identification poses a significant challenge, as obtaining long and intact fungal DNA is imperative. Comparing different lysis methods showed that chemical lysis with CTAB/SDS generated DNA from pure fungal cultures with high yields (ranging from 11.20 ± 0.17 µg to 22.99 ± 2.22 µg depending on the species) while preserving integrity. Evaluating the efficacy of human DNA depletion protocols demonstrated an 88.73% reduction in human reads and a 99.53% increase in fungal reads compared to the untreated yeast-spiked human blood control. Evaluation of the developed DNA extraction protocol on simulated clinical hemocultures revealed that the obtained DNA sequences exceed 10 kb in length, enabling a highly efficient sequencing run with over 80% active pores. The quality of the DNA, as indicated by the 260/280 and 260/230 ratios obtained from NanoDrop spectrophotometer readings, exceeded 1.8 and 2.0, respectively. This demonstrated the great potential of the herein optimized protocol to extract high-quality fungal DNA from clinical specimens enabling long-read metagenomics sequencing.
IMPORTANCE: A novel streamlined DNA extraction protocol was developed to efficiently isolate high molecular weight fungal DNA from hemoculture samples, which is crucial for long-read sequencing applications. By eliminating the need for labor-intensive and shear-force-inducing steps, such as liquid nitrogen grinding or bead beating, the protocol is more user-friendly and better suited for clinical laboratory settings. The automation of cleanup and extraction steps further shortens the overall turnaround time to under 6 hours. Although not specifically designed for ultra-long DNA extraction, this protocol effectively supports fungal identification through Oxford Nanopore Technology (ONT) sequencing. It yields high molecular weight DNA, resulting in longer sequence fragments that improve the number of fungal reads over human reads. Future improvements, including adaptive sampling technology, could further simplify the process by reducing the need for human DNA depletion, paving the way for more automated, bioinformatics-driven workflows.
Additional Links: PMID-40197053
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40197053,
year = {2025},
author = {Langsiri, N and Meyer, W and Irinyi, L and Worasilchai, N and Pombubpa, N and Wongsurawat, T and Jenjaroenpun, P and Luangsa-Ard, JJ and Chindamporn, A},
title = {Optimizing fungal DNA extraction and purification for Oxford Nanopore untargeted shotgun metagenomic sequencing from simulated hemoculture specimens.},
journal = {mSystems},
volume = {},
number = {},
pages = {e0116624},
doi = {10.1128/msystems.01166-24},
pmid = {40197053},
issn = {2379-5077},
abstract = {UNLABELLED: Long-read metagenomics provides a promising alternative approach to fungal identification, circumventing methodological biases, associated with DNA amplification, which is a prerequisite for DNA barcoding/metabarcoding based on the primary fungal DNA barcode (Internal Transcribed Spacer (ITS) region). However, DNA extraction for long-read sequencing-based fungal identification poses a significant challenge, as obtaining long and intact fungal DNA is imperative. Comparing different lysis methods showed that chemical lysis with CTAB/SDS generated DNA from pure fungal cultures with high yields (ranging from 11.20 ± 0.17 µg to 22.99 ± 2.22 µg depending on the species) while preserving integrity. Evaluating the efficacy of human DNA depletion protocols demonstrated an 88.73% reduction in human reads and a 99.53% increase in fungal reads compared to the untreated yeast-spiked human blood control. Evaluation of the developed DNA extraction protocol on simulated clinical hemocultures revealed that the obtained DNA sequences exceed 10 kb in length, enabling a highly efficient sequencing run with over 80% active pores. The quality of the DNA, as indicated by the 260/280 and 260/230 ratios obtained from NanoDrop spectrophotometer readings, exceeded 1.8 and 2.0, respectively. This demonstrated the great potential of the herein optimized protocol to extract high-quality fungal DNA from clinical specimens enabling long-read metagenomics sequencing.
IMPORTANCE: A novel streamlined DNA extraction protocol was developed to efficiently isolate high molecular weight fungal DNA from hemoculture samples, which is crucial for long-read sequencing applications. By eliminating the need for labor-intensive and shear-force-inducing steps, such as liquid nitrogen grinding or bead beating, the protocol is more user-friendly and better suited for clinical laboratory settings. The automation of cleanup and extraction steps further shortens the overall turnaround time to under 6 hours. Although not specifically designed for ultra-long DNA extraction, this protocol effectively supports fungal identification through Oxford Nanopore Technology (ONT) sequencing. It yields high molecular weight DNA, resulting in longer sequence fragments that improve the number of fungal reads over human reads. Future improvements, including adaptive sampling technology, could further simplify the process by reducing the need for human DNA depletion, paving the way for more automated, bioinformatics-driven workflows.},
}
RevDate: 2025-04-09
CmpDate: 2025-04-09
Gut microbiome differences and disease risk in colorectal cancer relatives and healthy individuals.
Frontiers in cellular and infection microbiology, 15:1573216.
Given the heightened focus on high-risk populations, this study aimed to provide insights into early susceptibility and preventive strategies for colorectal cancer (CRC) by focusing on high-risk populations. In this research, fecal samples from 1,647 individuals across three discovery cohorts and nine external validation cohorts were sequenced using whole-genome metagenomic sequencing. A prediction model based on random forest was constructed using the nine external cohorts and independently validated with the three discovery cohorts. A disease probability (POD) model based on microbial biomarkers was developed to assess CRC risk. We found that the gut microbiome composition of CRC relatives differed from that of controls, with enrichment of species such as Fusobacterium and Bacteroides and a reduction in beneficial genera like Coprococcus and Roseburia. Additionally, dietary red meat intake emerged as a risk factor. The POD model indicated an elevated risk of CRC in unaffected relatives. The findings suggest that the POD for CRC may be increased in unaffected relatives or individuals living in shared environments, although this difference did not reach statistical significance. Our study introduces a novel framework for assessing the risk of colorectal cancer in ostensibly healthy individuals.
Additional Links: PMID-40196042
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40196042,
year = {2025},
author = {Wang, H and Zhu, W and Lei, J and Liu, Z and Cai, Y and Wang, S and Li, A},
title = {Gut microbiome differences and disease risk in colorectal cancer relatives and healthy individuals.},
journal = {Frontiers in cellular and infection microbiology},
volume = {15},
number = {},
pages = {1573216},
pmid = {40196042},
issn = {2235-2988},
mesh = {Humans ; *Colorectal Neoplasms/microbiology/epidemiology ; *Gastrointestinal Microbiome ; Feces/microbiology ; Male ; Female ; Middle Aged ; Risk Factors ; Aged ; *Bacteria/classification/genetics/isolation & purification ; Metagenomics ; Adult ; Cohort Studies ; Family ; Whole Genome Sequencing ; },
abstract = {Given the heightened focus on high-risk populations, this study aimed to provide insights into early susceptibility and preventive strategies for colorectal cancer (CRC) by focusing on high-risk populations. In this research, fecal samples from 1,647 individuals across three discovery cohorts and nine external validation cohorts were sequenced using whole-genome metagenomic sequencing. A prediction model based on random forest was constructed using the nine external cohorts and independently validated with the three discovery cohorts. A disease probability (POD) model based on microbial biomarkers was developed to assess CRC risk. We found that the gut microbiome composition of CRC relatives differed from that of controls, with enrichment of species such as Fusobacterium and Bacteroides and a reduction in beneficial genera like Coprococcus and Roseburia. Additionally, dietary red meat intake emerged as a risk factor. The POD model indicated an elevated risk of CRC in unaffected relatives. The findings suggest that the POD for CRC may be increased in unaffected relatives or individuals living in shared environments, although this difference did not reach statistical significance. Our study introduces a novel framework for assessing the risk of colorectal cancer in ostensibly healthy individuals.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*Colorectal Neoplasms/microbiology/epidemiology
*Gastrointestinal Microbiome
Feces/microbiology
Male
Female
Middle Aged
Risk Factors
Aged
*Bacteria/classification/genetics/isolation & purification
Metagenomics
Adult
Cohort Studies
Family
Whole Genome Sequencing
RevDate: 2025-04-09
CmpDate: 2025-04-09
Bacterial consortia of ewes' whey in the production of bryndza cheese in Slovakia.
Letters in applied microbiology, 78(4):.
Whey from previous production is often used as a natural starter in the technology of traditional cheeses, including bryndza cheese in Slovakia. Therefore, studying its bacterial community and isolating new potential natural starters is important for improving the characteristics of the final product. Composition of bacterial consortia of fresh and fermented whey in the production of raw ewes' milk-based bryndza cheese from 8 small or medium-sized producers was analysed. Culture-based microbiological analysis and culture-independent analysis based on 16S rRNA gene sequencing by MiSeq and MinION were used. Results showed the dominance of lactococci or streptococci, with 3-8 log CFU ml-[1] of Lactobacillus sensu lato in all whey samples. Potential natural starters comprising Lacticaseibacillus paracasei/casei, Lactiplantibacillus plantarum, Lentilactobacillus parabuchneri, Lactobacillus helveticus, L. diolivorans, Levilactobacillus brevis, Limosilactobacillus fermentum, L. delbrueckii, L. gasseri and L. otakiensis were isolated. Coliforms were also present in all samples, with no consistently lower values in fermented whey samples. Some samples contained pseudomonads and/or acinetobacters. Coagulase-positive staphylococci were present at relevant levels in samples from 4 producers. The results revealed that whey is a source of natural starters due to the presence of lactobacilli.
Additional Links: PMID-40153355
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40153355,
year = {2025},
author = {Klištincová, N and Koreňová, J and Rešková, Z and Čaplová, Z and Burdová, A and Farkas, Z and Polovka, M and Drahovská, H and Pangallo, D and Kuchta, T},
title = {Bacterial consortia of ewes' whey in the production of bryndza cheese in Slovakia.},
journal = {Letters in applied microbiology},
volume = {78},
number = {4},
pages = {},
doi = {10.1093/lambio/ovaf047},
pmid = {40153355},
issn = {1472-765X},
support = {APVV-20-0001//Slovak Research and Development Agency/ ; },
mesh = {Animals ; Slovakia ; *Cheese/microbiology ; *Whey/microbiology ; Sheep ; RNA, Ribosomal, 16S/genetics ; Fermentation ; *Bacteria/classification/genetics/isolation & purification ; *Microbial Consortia ; Female ; Food Microbiology ; DNA, Bacterial/genetics/chemistry ; Milk/microbiology ; },
abstract = {Whey from previous production is often used as a natural starter in the technology of traditional cheeses, including bryndza cheese in Slovakia. Therefore, studying its bacterial community and isolating new potential natural starters is important for improving the characteristics of the final product. Composition of bacterial consortia of fresh and fermented whey in the production of raw ewes' milk-based bryndza cheese from 8 small or medium-sized producers was analysed. Culture-based microbiological analysis and culture-independent analysis based on 16S rRNA gene sequencing by MiSeq and MinION were used. Results showed the dominance of lactococci or streptococci, with 3-8 log CFU ml-[1] of Lactobacillus sensu lato in all whey samples. Potential natural starters comprising Lacticaseibacillus paracasei/casei, Lactiplantibacillus plantarum, Lentilactobacillus parabuchneri, Lactobacillus helveticus, L. diolivorans, Levilactobacillus brevis, Limosilactobacillus fermentum, L. delbrueckii, L. gasseri and L. otakiensis were isolated. Coliforms were also present in all samples, with no consistently lower values in fermented whey samples. Some samples contained pseudomonads and/or acinetobacters. Coagulase-positive staphylococci were present at relevant levels in samples from 4 producers. The results revealed that whey is a source of natural starters due to the presence of lactobacilli.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
Slovakia
*Cheese/microbiology
*Whey/microbiology
Sheep
RNA, Ribosomal, 16S/genetics
Fermentation
*Bacteria/classification/genetics/isolation & purification
*Microbial Consortia
Female
Food Microbiology
DNA, Bacterial/genetics/chemistry
Milk/microbiology
RevDate: 2025-04-09
CmpDate: 2025-04-09
Actively N2O-Reducing Oxygen-Tolerant Microbial Consortium Attained by Using a High-Dilution-Rate Chemostat Fed with Methanol.
Environmental science & technology, 59(13):6673-6685.
Nitrous oxide-reducing bacteria (N2ORB) are generally considered the only biological sink for the potent greenhouse gas N2O. Although N2O consumption activities by diverse heterotrophic N2ORB have been detected, knowledge gaps remain about the phylogenies, physiologies, and activities of N2ORB. Here, we successfully enriched a methylotrophic N2ORB consortium under intermittent oxygen and N2O supplies. [15]N tracer analysis showed that the N2O consumption activity of the enriched consortium was higher than its N2O production activity in the presence of either a single or multiple electron acceptors (i.e., nitrogen oxides). The observed maximum N2O consumption was 80.7 μmol·g-biomass[-1]·h[-1]. Quantitative PCR results showed that clade I nosZ bacteria overwhelmed clade II nosZ bacteria at high (0.41 mmol·min[-1]) and low (0.08 mmol·min[-1]) N2O loading rates. The dilution rate and N2O loading rate affected the microbial community composition and activity. A higher N2O loading rate stimulated active and oxygen-tolerant N2ORB that boosted N2O consumption by approximately 50% in the presence of oxygen. Metagenomic analysis unraveled the predominance of a novel methylotrophic N2ORB, possessing entire denitrifying genes and high-affinity terminal oxidase genes, from the reactor with a high N2O loading rate. The unique physiological traits of the consortium enriched by methanol shed light on a novel function─aerobic N2O consumption by N2ORB─and pave the way for innovative N2O mitigation strategies applying powerful N2O sinks in engineered systems.
Additional Links: PMID-40145240
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40145240,
year = {2025},
author = {Zhou, Y and Oba, K and Xu, T and Kuroiwa, M and Hori, T and Terada, A},
title = {Actively N2O-Reducing Oxygen-Tolerant Microbial Consortium Attained by Using a High-Dilution-Rate Chemostat Fed with Methanol.},
journal = {Environmental science & technology},
volume = {59},
number = {13},
pages = {6673-6685},
doi = {10.1021/acs.est.4c12732},
pmid = {40145240},
issn = {1520-5851},
mesh = {Methanol/metabolism ; *Nitrous Oxide/metabolism ; Oxygen/metabolism ; *Microbial Consortia ; Bacteria/metabolism ; Oxidation-Reduction ; },
abstract = {Nitrous oxide-reducing bacteria (N2ORB) are generally considered the only biological sink for the potent greenhouse gas N2O. Although N2O consumption activities by diverse heterotrophic N2ORB have been detected, knowledge gaps remain about the phylogenies, physiologies, and activities of N2ORB. Here, we successfully enriched a methylotrophic N2ORB consortium under intermittent oxygen and N2O supplies. [15]N tracer analysis showed that the N2O consumption activity of the enriched consortium was higher than its N2O production activity in the presence of either a single or multiple electron acceptors (i.e., nitrogen oxides). The observed maximum N2O consumption was 80.7 μmol·g-biomass[-1]·h[-1]. Quantitative PCR results showed that clade I nosZ bacteria overwhelmed clade II nosZ bacteria at high (0.41 mmol·min[-1]) and low (0.08 mmol·min[-1]) N2O loading rates. The dilution rate and N2O loading rate affected the microbial community composition and activity. A higher N2O loading rate stimulated active and oxygen-tolerant N2ORB that boosted N2O consumption by approximately 50% in the presence of oxygen. Metagenomic analysis unraveled the predominance of a novel methylotrophic N2ORB, possessing entire denitrifying genes and high-affinity terminal oxidase genes, from the reactor with a high N2O loading rate. The unique physiological traits of the consortium enriched by methanol shed light on a novel function─aerobic N2O consumption by N2ORB─and pave the way for innovative N2O mitigation strategies applying powerful N2O sinks in engineered systems.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Methanol/metabolism
*Nitrous Oxide/metabolism
Oxygen/metabolism
*Microbial Consortia
Bacteria/metabolism
Oxidation-Reduction
RevDate: 2025-04-08
CmpDate: 2025-04-08
Gut microbiota-driven BCAA biosynthesis via Staphylococcus aureus -expressed acetolactate synthase impairs glycemic control in type 2 diabetes in South China.
Microbiological research, 296:128145.
An increase in branched-chain amino acid (BCAA) levels can result in insulin resistance at different stages of type 2 diabetes (T2D), however, the causes of this increase are unclear. We performed metagenomics and metabolomics profiling in patients with prediabetes (PDM), newly diagnosed diabetes (NDDM), and post-medication type 2 diabetes (P2DM) to investigate whether altered gut microbes and metabolites could explain the specific clinical characteristics of different disease stages of T2D. Here we identify acetolactate synthase (ALS) a BCAA biosynthesis enzyme in Staphylococcus aureus as a cause of T2D insulin resistance. Compared with healthy peoples, patients with PDM, NDDM, and P2DM groups, especially in P2DM group, have increased faecal numbers of S. aureus. We also demonstrated that insulin administration may be a risk factor for S. aureus infection in T2D. The presence of ALS-positive S. aureus correlated with the levels of BCAAs and was associated with an increased fasting blood glucose (FBG) and insulin resistance. Humanized microbiota transplantation experiment indicated that ALS contributes to disordered insulin resistance mediated by S. aureus. We also found that S. aureus phage can reduced the FBG levels and insulin resistance in db/db mice. The ALS-positive S. aureus are associated with insulin resistance in T2D, opening a new therapeutic avenue for the prevention or treatment of diabetes.
Additional Links: PMID-40138872
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40138872,
year = {2025},
author = {Liang, T and Jiang, T and Liang, Z and Li, L and Chen, Y and Chen, T and Yang, L and Zhang, N and Dong, B and Xie, X and Gu, B and Wu, Q},
title = {Gut microbiota-driven BCAA biosynthesis via Staphylococcus aureus -expressed acetolactate synthase impairs glycemic control in type 2 diabetes in South China.},
journal = {Microbiological research},
volume = {296},
number = {},
pages = {128145},
doi = {10.1016/j.micres.2025.128145},
pmid = {40138872},
issn = {1618-0623},
mesh = {*Diabetes Mellitus, Type 2/microbiology/metabolism ; *Gastrointestinal Microbiome/physiology ; *Staphylococcus aureus/enzymology/genetics/metabolism ; *Amino Acids, Branched-Chain/biosynthesis ; *Acetolactate Synthase/metabolism/genetics ; Humans ; Animals ; Mice ; China ; Male ; Insulin Resistance ; Female ; Middle Aged ; *Glycemic Control ; Blood Glucose ; Feces/microbiology ; Staphylococcal Infections/microbiology ; Metagenomics ; Prediabetic State/microbiology ; Metabolomics ; Insulin ; },
abstract = {An increase in branched-chain amino acid (BCAA) levels can result in insulin resistance at different stages of type 2 diabetes (T2D), however, the causes of this increase are unclear. We performed metagenomics and metabolomics profiling in patients with prediabetes (PDM), newly diagnosed diabetes (NDDM), and post-medication type 2 diabetes (P2DM) to investigate whether altered gut microbes and metabolites could explain the specific clinical characteristics of different disease stages of T2D. Here we identify acetolactate synthase (ALS) a BCAA biosynthesis enzyme in Staphylococcus aureus as a cause of T2D insulin resistance. Compared with healthy peoples, patients with PDM, NDDM, and P2DM groups, especially in P2DM group, have increased faecal numbers of S. aureus. We also demonstrated that insulin administration may be a risk factor for S. aureus infection in T2D. The presence of ALS-positive S. aureus correlated with the levels of BCAAs and was associated with an increased fasting blood glucose (FBG) and insulin resistance. Humanized microbiota transplantation experiment indicated that ALS contributes to disordered insulin resistance mediated by S. aureus. We also found that S. aureus phage can reduced the FBG levels and insulin resistance in db/db mice. The ALS-positive S. aureus are associated with insulin resistance in T2D, opening a new therapeutic avenue for the prevention or treatment of diabetes.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Diabetes Mellitus, Type 2/microbiology/metabolism
*Gastrointestinal Microbiome/physiology
*Staphylococcus aureus/enzymology/genetics/metabolism
*Amino Acids, Branched-Chain/biosynthesis
*Acetolactate Synthase/metabolism/genetics
Humans
Animals
Mice
China
Male
Insulin Resistance
Female
Middle Aged
*Glycemic Control
Blood Glucose
Feces/microbiology
Staphylococcal Infections/microbiology
Metagenomics
Prediabetic State/microbiology
Metabolomics
Insulin
RevDate: 2025-04-09
CmpDate: 2025-04-09
Long-term metagenomic insights into the roles of antiviral defense systems in stabilizing activated sludge bacterial communities.
The ISME journal, 19(1):.
Bacteria have evolved various antiviral defense systems (DSs) to protect themselves, but how DSs respond to the variation of bacteriophages in complex bacterial communities and whether DSs function effectively in maintaining the stability of bacterial community structure and function remain unknown. Here, we conducted a long-term metagenomic investigation on the composition of bacterial and phage communities of monthly collected activated sludge (AS) samples from two full-scale wastewater treatment plants over 6 years and found that DSs were widespread in AS, with 91.1% of metagenome-assembled genomes (MAGs) having more than one complete DS. The stability of the bacterial community was maintained under the fluctuations of the phage community, and DS abundance and phage abundance were strongly positively correlated; there was a 0-3-month time lag in the responses of DSs to phage fluctuations. The rapid turnover of clustered regularly interspaced short palindromic repeat spacer repertoires further highlighted the dynamic nature of bacterial defense mechanisms. A pan-immunity phenomenon was also observed, with nearly identical MAGs showing significant differences in DS composition, which contributed to community stability at the species level. This study provides novel insights into the complexity of phage-bacteria interactions in complex bacterial communities and reveals the key roles of DSs in stabilizing bacterial community structure and function.
Additional Links: PMID-40096540
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40096540,
year = {2025},
author = {Zhang, Q and Li, J and Tuo, J and Liu, S and Liu, Y and Liu, P and Ye, L and Zhang, XX},
title = {Long-term metagenomic insights into the roles of antiviral defense systems in stabilizing activated sludge bacterial communities.},
journal = {The ISME journal},
volume = {19},
number = {1},
pages = {},
doi = {10.1093/ismejo/wraf051},
pmid = {40096540},
issn = {1751-7370},
support = {BE2022837//Jiangsu Province Key Research and Development Program/ ; 52200057//National Natural Science Foundation of China/ ; },
mesh = {*Sewage/microbiology ; *Bacteria/virology/genetics/classification ; *Bacteriophages/genetics ; Metagenomics ; *Metagenome ; *Microbiota ; },
abstract = {Bacteria have evolved various antiviral defense systems (DSs) to protect themselves, but how DSs respond to the variation of bacteriophages in complex bacterial communities and whether DSs function effectively in maintaining the stability of bacterial community structure and function remain unknown. Here, we conducted a long-term metagenomic investigation on the composition of bacterial and phage communities of monthly collected activated sludge (AS) samples from two full-scale wastewater treatment plants over 6 years and found that DSs were widespread in AS, with 91.1% of metagenome-assembled genomes (MAGs) having more than one complete DS. The stability of the bacterial community was maintained under the fluctuations of the phage community, and DS abundance and phage abundance were strongly positively correlated; there was a 0-3-month time lag in the responses of DSs to phage fluctuations. The rapid turnover of clustered regularly interspaced short palindromic repeat spacer repertoires further highlighted the dynamic nature of bacterial defense mechanisms. A pan-immunity phenomenon was also observed, with nearly identical MAGs showing significant differences in DS composition, which contributed to community stability at the species level. This study provides novel insights into the complexity of phage-bacteria interactions in complex bacterial communities and reveals the key roles of DSs in stabilizing bacterial community structure and function.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Sewage/microbiology
*Bacteria/virology/genetics/classification
*Bacteriophages/genetics
Metagenomics
*Metagenome
*Microbiota
RevDate: 2025-04-08
CmpDate: 2025-04-08
Rhizosphere metabolite dynamics in continuous cropping of vineyards: Impact on microflora diversity and co-occurrence networks.
Microbiological research, 296:128134.
The metabolism of the crop rhizosphere affects microflora diversity and nutrient cycling. However, understanding rhizosphere metabolism in suitable crops within arid desert environments and its impact on microflora interactions remains limited. Through metagenomic and non-targeted metabolomic sequencing of rhizosphere soils from one uncultivated land and four vineyards with cropping years of 5, 10, 15 and 20 years, the critical importance of rhizosphere metabolites in maintaining bacterial and fungal diversity was elucidated. The results revealed that Nocardioides, Streptomyces, and Solirubrobacter were the relatively abundant bacterial genera in rhizosphere soils, while Rhizophagus, Glomus, and Pseudogymnoascus were the relatively abundant fungal genera. The composition of rhizosphere metabolic changed significantly during the continuous cropping of grapevines. Dimethylglycine, Formononetin, and Dehydroepiandrosterone were the most important metabolites. Enrichment analysis revealed significant involvement of metabolic pathways such as biosynthesis of amino acids, unsaturated fatty acids, and linoleic acid metabolism. Procrustes analysis highlighted stronger correlations between rhizosphere metabolites and bacterial community compared to those of fungal community. This suggests distinct responses of microflora to crop-released chemical elements across different soil habitats. Co-occurrence network analysis demonstrated complex associations between rhizosphere metabolites and soil microflora, the positive correlations between rhizosphere metabolites and microflora networks predominated over negative correlations. Partial least squares path model indicated that the effect of cropping years on rhizosphere metabolites was greater than that on bacterial microflora diversity. Futhermore, pH, total phosphorus, and alkali-hydrolyzed nitrogen were the key environmental factors affecting rhizosphere metabolites and microbial diversity. These results deepen our valuable insights into the complex biological processes that rhizosphere metabolites influence on microorganisms, and provide strong support for maintaining microbial diversity in farmland soils in arid regions.
Additional Links: PMID-40068342
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40068342,
year = {2025},
author = {Song, R and Lv, B and He, Z and Li, H and Wang, H},
title = {Rhizosphere metabolite dynamics in continuous cropping of vineyards: Impact on microflora diversity and co-occurrence networks.},
journal = {Microbiological research},
volume = {296},
number = {},
pages = {128134},
doi = {10.1016/j.micres.2025.128134},
pmid = {40068342},
issn = {1618-0623},
mesh = {*Rhizosphere ; *Soil Microbiology ; *Bacteria/classification/metabolism/genetics/isolation & purification ; *Fungi/classification/metabolism/genetics/isolation & purification ; Biodiversity ; *Vitis/microbiology/growth & development ; Soil/chemistry ; Microbiota ; Crops, Agricultural/microbiology/growth & development ; Farms ; Metabolomics ; Metagenomics ; Metabolome ; },
abstract = {The metabolism of the crop rhizosphere affects microflora diversity and nutrient cycling. However, understanding rhizosphere metabolism in suitable crops within arid desert environments and its impact on microflora interactions remains limited. Through metagenomic and non-targeted metabolomic sequencing of rhizosphere soils from one uncultivated land and four vineyards with cropping years of 5, 10, 15 and 20 years, the critical importance of rhizosphere metabolites in maintaining bacterial and fungal diversity was elucidated. The results revealed that Nocardioides, Streptomyces, and Solirubrobacter were the relatively abundant bacterial genera in rhizosphere soils, while Rhizophagus, Glomus, and Pseudogymnoascus were the relatively abundant fungal genera. The composition of rhizosphere metabolic changed significantly during the continuous cropping of grapevines. Dimethylglycine, Formononetin, and Dehydroepiandrosterone were the most important metabolites. Enrichment analysis revealed significant involvement of metabolic pathways such as biosynthesis of amino acids, unsaturated fatty acids, and linoleic acid metabolism. Procrustes analysis highlighted stronger correlations between rhizosphere metabolites and bacterial community compared to those of fungal community. This suggests distinct responses of microflora to crop-released chemical elements across different soil habitats. Co-occurrence network analysis demonstrated complex associations between rhizosphere metabolites and soil microflora, the positive correlations between rhizosphere metabolites and microflora networks predominated over negative correlations. Partial least squares path model indicated that the effect of cropping years on rhizosphere metabolites was greater than that on bacterial microflora diversity. Futhermore, pH, total phosphorus, and alkali-hydrolyzed nitrogen were the key environmental factors affecting rhizosphere metabolites and microbial diversity. These results deepen our valuable insights into the complex biological processes that rhizosphere metabolites influence on microorganisms, and provide strong support for maintaining microbial diversity in farmland soils in arid regions.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Rhizosphere
*Soil Microbiology
*Bacteria/classification/metabolism/genetics/isolation & purification
*Fungi/classification/metabolism/genetics/isolation & purification
Biodiversity
*Vitis/microbiology/growth & development
Soil/chemistry
Microbiota
Crops, Agricultural/microbiology/growth & development
Farms
Metabolomics
Metagenomics
Metabolome
RevDate: 2025-04-09
CmpDate: 2025-04-09
The physical biogeography of Fusobacterium nucleatum in health and disease.
mBio, 16(4):e0298924.
UNLABELLED: Fusobacterium nucleatum (Fn) is an oral commensal inhabiting the human gingival plaque that is rarely found in the gut. However, in colorectal cancer (CRC), Fn can be isolated from stool samples and detected in metagenomes. We hypothesized that ecological characteristics of the gut are altered by disease, enabling Fn to colonize. Multiple genomically distinct populations of Fn exist, but their ecological preferences are unstudied. We identified six well-separated populations in 133 Fn genomes and used simulated metagenomes to demonstrate sensitive detection of populations in human oral and gut metagenomes. In 9,560 samples from 11 studies, Fn population C2 animalis is elevated in gut metagenomes from CRC and Crohn's disease patients and is observed more frequently in CRC stool samples than in the gingiva. Polymorphum, the most prevalent gingival Fn population, is significantly increased in Crohn's stool samples; this effect was significantly stronger in male hosts than in female. We find polymorphum genomes are enriched for biosynthetic gene clusters and fluoride exporters, while C2 animalis are high in iron transporters. Fn populations thus associate with specific clinical and demographic phenotypes and harbor distinct functional features. Ecological differences in closely related groups of bacteria inform microbiome impacts on human health.
IMPORTANCE: Fusobacterium nucleatum is a bacterium normally found in the gingiva. F. nucleatum generally does not colonize the healthy gut, but is observed in approximately a third of colorectal cancer (CRC) patient guts. F. nucleatum's presence in the gut during CRC has been linked to worse prognosis and increased tumor proliferation. Here, we describe the population structure of F. nucleatum in oral and gut microbiomes. We report substantial diversity in gene carriage among six distinct populations of F. nucleatum and identify population disease and body-site preferences. We find the C2 animalis population is more common in the CRC gut than in the gingiva and is enriched for iron transporters, which support gut colonization in known pathogens. We find that C2 animalis is also enriched in Crohn's disease and type 2 diabetes, suggesting ecological commonalities between the three diseases. Our work shows that closely related bacteria can have different associations with human physiology.
Additional Links: PMID-40062772
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40062772,
year = {2025},
author = {Connolly, JP and Kelly, L},
title = {The physical biogeography of Fusobacterium nucleatum in health and disease.},
journal = {mBio},
volume = {16},
number = {4},
pages = {e0298924},
doi = {10.1128/mbio.02989-24},
pmid = {40062772},
issn = {2150-7511},
support = {5T32GM007491-46//HHS | National Institutes of Health (NIH)/ ; //Elsa U. Pardee Foundation (EUPF)/ ; },
mesh = {*Fusobacterium nucleatum/genetics/isolation & purification/classification/physiology ; Humans ; *Colorectal Neoplasms/microbiology ; Female ; Male ; *Fusobacterium Infections/microbiology ; Crohn Disease/microbiology ; Feces/microbiology ; *Gastrointestinal Microbiome ; Metagenome ; Gingiva/microbiology ; Genome, Bacterial ; },
abstract = {UNLABELLED: Fusobacterium nucleatum (Fn) is an oral commensal inhabiting the human gingival plaque that is rarely found in the gut. However, in colorectal cancer (CRC), Fn can be isolated from stool samples and detected in metagenomes. We hypothesized that ecological characteristics of the gut are altered by disease, enabling Fn to colonize. Multiple genomically distinct populations of Fn exist, but their ecological preferences are unstudied. We identified six well-separated populations in 133 Fn genomes and used simulated metagenomes to demonstrate sensitive detection of populations in human oral and gut metagenomes. In 9,560 samples from 11 studies, Fn population C2 animalis is elevated in gut metagenomes from CRC and Crohn's disease patients and is observed more frequently in CRC stool samples than in the gingiva. Polymorphum, the most prevalent gingival Fn population, is significantly increased in Crohn's stool samples; this effect was significantly stronger in male hosts than in female. We find polymorphum genomes are enriched for biosynthetic gene clusters and fluoride exporters, while C2 animalis are high in iron transporters. Fn populations thus associate with specific clinical and demographic phenotypes and harbor distinct functional features. Ecological differences in closely related groups of bacteria inform microbiome impacts on human health.
IMPORTANCE: Fusobacterium nucleatum is a bacterium normally found in the gingiva. F. nucleatum generally does not colonize the healthy gut, but is observed in approximately a third of colorectal cancer (CRC) patient guts. F. nucleatum's presence in the gut during CRC has been linked to worse prognosis and increased tumor proliferation. Here, we describe the population structure of F. nucleatum in oral and gut microbiomes. We report substantial diversity in gene carriage among six distinct populations of F. nucleatum and identify population disease and body-site preferences. We find the C2 animalis population is more common in the CRC gut than in the gingiva and is enriched for iron transporters, which support gut colonization in known pathogens. We find that C2 animalis is also enriched in Crohn's disease and type 2 diabetes, suggesting ecological commonalities between the three diseases. Our work shows that closely related bacteria can have different associations with human physiology.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Fusobacterium nucleatum/genetics/isolation & purification/classification/physiology
Humans
*Colorectal Neoplasms/microbiology
Female
Male
*Fusobacterium Infections/microbiology
Crohn Disease/microbiology
Feces/microbiology
*Gastrointestinal Microbiome
Metagenome
Gingiva/microbiology
Genome, Bacterial
RevDate: 2025-04-09
CmpDate: 2025-04-09
SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx.
mBio, 16(4):e0401524.
The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro. Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.
Additional Links: PMID-39998226
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid39998226,
year = {2025},
author = {Martino, C and Kellman, BP and Sandoval, DR and Clausen, TM and Cooper, R and Benjdia, A and Soualmia, F and Clark, AE and Garretson, AF and Marotz, CA and Song, SJ and Wandro, S and Zaramela, LS and Salido, RA and Zhu, Q and Armingol, E and Vázquez-Baeza, Y and McDonald, D and Sorrentino, JT and Taylor, B and Belda-Ferre, P and Das, P and Ali, F and Liang, C and Zhang, Y and Schifanella, L and Covizzi, A and Lai, A and Riva, A and Basting, C and Broedlow, CA and Havulinna, AS and Jousilahti, P and Estaki, M and Kosciolek, T and Kuplicki, R and Victor, TA and Paulus, MP and Savage, KE and Benbow, JL and Spielfogel, ES and Anderson, CAM and Martinez, ME and Lacey, JV and Huang, S and Haiminen, N and Parida, L and Kim, H-C and Gilbert, JA and Sweeney, DA and Allard, SM and Swafford, AD and Cheng, S and Inouye, M and Niiranen, T and Jain, M and Salomaa, V and Zengler, K and Klatt, NR and Hasty, J and Berteau, O and Carlin, AF and Esko, JD and Lewis, NE and Knight, R},
title = {SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx.},
journal = {mBio},
volume = {16},
number = {4},
pages = {e0401524},
doi = {10.1128/mbio.04015-24},
pmid = {39998226},
issn = {2150-7511},
support = {P01 HL131474/HL/NHLBI NIH HHS/United States ; AI Horizons Network//IBM | IBM Research/ ; P01 HL131474/HL/NHLBI NIH HHS/United States ; NNF20SA0066621//Novo Nordisk Foundation/ ; 2031989//National Science Foundation (NSF)/ ; //Alfred Benzon Foundation (The Alfred Benzon Foundation)/ ; 321351 and 354447//Academy of Finland/ ; //Emil Aaltosen Säätiö (Emil Aaltonen Foundation)/ ; //Sydäntutkimussäätiö (Finnish Foundation for Cardiovascular Research)/ ; R01ES027595//HHS | National Institutes of Health (NIH)/ ; 2018-72190270//ANID Becas Chile Doctorado/ ; 321356//Academy of Finland/ ; N/A//UC San Diego Center for Microbiome Innovation/ ; 335525//Academy of Finland/ ; 101046041//Union's Horizon Europe Research and Innovation 459 Actions/ ; ANR-17-CE11-0014//French National Research Agency/ ; ANR-20-CE44-0005//French National Research Agency/ ; R01GM069811//HHS | National Institutes of Health (NIH)/ ; //Munz Chair of Cardiovascular Prediction and Prevention/ ; //NIHR | NIHR Cambridge Biomedical Research Centre (NIHR Cambridge BRC)/ ; RG/13/13/30194//British Heart Foundation (BHF)/ ; RG/18/13/33946//British Heart Foundation (BHF)/ ; BRC-1215-20014//NIHR | NIHR Cambridge Biomedical Research Centre (NIHR Cambridge BRC)/ ; 1DP1AT010885//HHS | National Institutes of Health (NIH)/ ; //Health Data Research UK (HDR UK)/ ; U01-CA199277//HHS | National Institutes of Health (NIH)/ ; P30-CA033572//HHS | National Institutes of Health (NIH)/ ; P30-CA023100//HHS | National Institutes of Health (NIH)/ ; UM1-CA164917//HHS | National Institutes of Health (NIH)/ ; R01-CA077398//HHS | National Institutes of Health (NIH)/ ; 2038509//National Science Foundation (NSF)/ ; R00RG2503//UC | University of California, San Diego (UCSD)/ ; 3022//Emerald Foundation/ ; 1P30DK120515//HHS | National Institutes of Health (NIH)/ ; R35GM119850//HHS | National Institutes of Health (NIH)/ ; UH2AI153029//HHS | National Institutes of Health (NIH)/ ; },
mesh = {Humans ; *COVID-19/virology/microbiology/metabolism ; *Glycocalyx/metabolism/virology ; *SARS-CoV-2/pathogenicity/physiology ; *Gastrointestinal Microbiome/physiology ; Male ; Female ; Heparan Sulfate Proteoglycans/metabolism ; Middle Aged ; Gastrointestinal Tract/microbiology ; Adult ; *Bacteria/metabolism ; Spike Glycoprotein, Coronavirus/metabolism ; },
abstract = {The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro. Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Humans
*COVID-19/virology/microbiology/metabolism
*Glycocalyx/metabolism/virology
*SARS-CoV-2/pathogenicity/physiology
*Gastrointestinal Microbiome/physiology
Male
Female
Heparan Sulfate Proteoglycans/metabolism
Middle Aged
Gastrointestinal Tract/microbiology
Adult
*Bacteria/metabolism
Spike Glycoprotein, Coronavirus/metabolism
RevDate: 2025-04-08
CmpDate: 2025-04-08
Gut bacteriome dynamics in high altitude-adapted chicken lines: a key to future poultry therapeutics.
Scientific reports, 15(1):11910.
High-altitude-adapted chickens harbor a unique gut bacteriome essential for their survival under extremely cold and hypoxic environment, however, little is known about their population and functional dynamics, limiting their application in poultry production. Hence, this study employed amplicon-based metagenomics to examine the gut bacterial diversity and their functional profile in two high-altitude-adapted chicken lines, e.g. LEHBRO-1 and LEHBRO-3. The results revealed significant variations in taxonomic abundance at the phylum level, with Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria predominating in LEHBRO-1, whereas Firmicutes, Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria predominated in LEHBRO-3. Genus-level diversity and Linear Discriminant Analysis Effect Size (LEfSe) biomarker analysis also substantiated the differences in the gut bacterial communities between the two chicken lines. Furthermore, functional profiling revealed enrichment of carbohydrate, nucleotide, lipid, amino acid, fatty acid, energy, and glycan metabolic pathways in the gut bacteriomes of these high-altitude chicken lines. The Statistical Analysis of Metagenomic Profiles (STAMP) for metabolic profiling identified a significant difference in purine and protein metabolism between these two chicken lines. These findings indicate the unique gut bacteriome and their functional diversity in high-altitude-adapted chickens, which would provide a foundation for future research on gut therapeutics to improve chicken health and productivity in high-altitude areas.
Additional Links: PMID-40195460
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40195460,
year = {2025},
author = {Bhagat, NR and Bharti, VK and Shukla, G and Rishi, P and Chaurasia, OP},
title = {Gut bacteriome dynamics in high altitude-adapted chicken lines: a key to future poultry therapeutics.},
journal = {Scientific reports},
volume = {15},
number = {1},
pages = {11910},
pmid = {40195460},
issn = {2045-2322},
mesh = {Animals ; *Chickens/microbiology ; *Gastrointestinal Microbiome ; *Altitude ; Metagenomics/methods ; *Bacteria/genetics/classification ; *Adaptation, Physiological ; Metagenome ; },
abstract = {High-altitude-adapted chickens harbor a unique gut bacteriome essential for their survival under extremely cold and hypoxic environment, however, little is known about their population and functional dynamics, limiting their application in poultry production. Hence, this study employed amplicon-based metagenomics to examine the gut bacterial diversity and their functional profile in two high-altitude-adapted chicken lines, e.g. LEHBRO-1 and LEHBRO-3. The results revealed significant variations in taxonomic abundance at the phylum level, with Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria predominating in LEHBRO-1, whereas Firmicutes, Proteobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria predominated in LEHBRO-3. Genus-level diversity and Linear Discriminant Analysis Effect Size (LEfSe) biomarker analysis also substantiated the differences in the gut bacterial communities between the two chicken lines. Furthermore, functional profiling revealed enrichment of carbohydrate, nucleotide, lipid, amino acid, fatty acid, energy, and glycan metabolic pathways in the gut bacteriomes of these high-altitude chicken lines. The Statistical Analysis of Metagenomic Profiles (STAMP) for metabolic profiling identified a significant difference in purine and protein metabolism between these two chicken lines. These findings indicate the unique gut bacteriome and their functional diversity in high-altitude-adapted chickens, which would provide a foundation for future research on gut therapeutics to improve chicken health and productivity in high-altitude areas.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
Animals
*Chickens/microbiology
*Gastrointestinal Microbiome
*Altitude
Metagenomics/methods
*Bacteria/genetics/classification
*Adaptation, Physiological
Metagenome
RevDate: 2025-04-08
CmpDate: 2025-04-08
Comprehensive analysis of orthologous genes reveals functional dynamics and energy metabolism in the rhizospheric microbiome of Moringa oleifera.
Functional & integrative genomics, 25(1):82.
Moringa oleifera, known for its nutritional and therapeutic properties, exhibits a complex relationship with its rhizospheric soil microbiome. This study aimed to elucidate the microbiome's structural composition, molecular functions, and its role in plant growth by integrating Clusters of Orthologous Genes (COG) analysis with enzymatic functions previously identified through KEGG, CAZy, and CARD databases. Metagenomic sequencing and bioinformatics analysis were performed from the rhizospheric soil microbiome of M. oleifera collected from the Mecca district in Saudi Arabia. The analysis revealed a role for the rhizospheric microbiome in energy production, storage, and regulation, with glucose serving as a crucial precursor for NADH synthesis and subsequent ATP production via oxidative phosphorylation. Key orthologous genes (OGs) implicated in this process include NuoD, NuoH, NuoM, NuoN, NuoL, atpA, QcrB/PetB, and AccC. Additionally, OGs involved in ATP hydrolysis, such as ClpP, EntF, YopO, and AtoC, were identified. Taxonomic analysis highlighted Actinobacteria and Proteobacteria as the predominant phyla, with enriched genera including Blastococcus, Nocardioides, Streptomyces, Microvirga, Sphingomonas, and Massilia, correlating with specific OGs involved in ATP hydrolysis. This study provides insights into the molecular mechanisms underpinning plant-microbe interactions and highlights the multifaceted roles of ATP-dependent processes in the rhizosphere. Further research is recommended to explore the potential applications of these findings in sustainable agriculture and ecosystem management.
Additional Links: PMID-40195156
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40195156,
year = {2025},
author = {Sefrji, FO and Abulfaraj, AA and Alshehrei, FM and Al-Andal, A and Alnahari, AA and Tashkandi, M and Baz, L and Barqawi, AA and Almutrafy, AM and Alshareef, SA and Alkhatib, SN and Abuauf, HW and Jalal, RS and Aloufi, AS},
title = {Comprehensive analysis of orthologous genes reveals functional dynamics and energy metabolism in the rhizospheric microbiome of Moringa oleifera.},
journal = {Functional & integrative genomics},
volume = {25},
number = {1},
pages = {82},
pmid = {40195156},
issn = {1438-7948},
mesh = {*Moringa oleifera/microbiology/genetics/metabolism ; *Rhizosphere ; *Microbiota/genetics ; *Energy Metabolism/genetics ; Soil Microbiology ; Bacteria/genetics/classification ; Adenosine Triphosphate/metabolism ; Metagenome ; },
abstract = {Moringa oleifera, known for its nutritional and therapeutic properties, exhibits a complex relationship with its rhizospheric soil microbiome. This study aimed to elucidate the microbiome's structural composition, molecular functions, and its role in plant growth by integrating Clusters of Orthologous Genes (COG) analysis with enzymatic functions previously identified through KEGG, CAZy, and CARD databases. Metagenomic sequencing and bioinformatics analysis were performed from the rhizospheric soil microbiome of M. oleifera collected from the Mecca district in Saudi Arabia. The analysis revealed a role for the rhizospheric microbiome in energy production, storage, and regulation, with glucose serving as a crucial precursor for NADH synthesis and subsequent ATP production via oxidative phosphorylation. Key orthologous genes (OGs) implicated in this process include NuoD, NuoH, NuoM, NuoN, NuoL, atpA, QcrB/PetB, and AccC. Additionally, OGs involved in ATP hydrolysis, such as ClpP, EntF, YopO, and AtoC, were identified. Taxonomic analysis highlighted Actinobacteria and Proteobacteria as the predominant phyla, with enriched genera including Blastococcus, Nocardioides, Streptomyces, Microvirga, Sphingomonas, and Massilia, correlating with specific OGs involved in ATP hydrolysis. This study provides insights into the molecular mechanisms underpinning plant-microbe interactions and highlights the multifaceted roles of ATP-dependent processes in the rhizosphere. Further research is recommended to explore the potential applications of these findings in sustainable agriculture and ecosystem management.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Moringa oleifera/microbiology/genetics/metabolism
*Rhizosphere
*Microbiota/genetics
*Energy Metabolism/genetics
Soil Microbiology
Bacteria/genetics/classification
Adenosine Triphosphate/metabolism
Metagenome
RevDate: 2025-04-07
Microbiota changes in lactation in the short-beaked echidna (Tachyglossus aculeatus).
FEMS microbiology ecology pii:8107906 [Epub ahead of print].
Monotreme and marsupial development is characterised by a short gestation, with young exposed to the environment at an early developmental stage and supported by a long lactation in the pouch, pseudo-pouch, or burrow. The lack of a functional adaptive immune system in these altricial young raises questions about how they survive in a microbe-rich environment. Previous studies on marsupial pouches have revealed changes to pouch microbe composition during lactation, but no information is available in monotremes. We investigated changes in the echidna pseudo-pouch microbiota (n = 22) during different stages of the reproductive cycle and whether this differs between wild and zoo-managed animals. Metataxonomic profiling using 16S rRNA gene sequencing revealed that pseudo-pouch microbial communities undergo dramatic changes during lactation, with significant differences in taxonomic composition compared with samples taken outside of breeding season or during courtship and mating. This suggests that the echidna pseudo-pouch environment changes during lactation to accommodate young that lack a functional adaptive immune system. Furthermore, captivity was not found to have a significant effect on pseudo-pouch microbiota. This study pioneers pouch microbiota research in monotremes, provides new biological information on echidna reproduction, and may also provide information about the effects of captive management to inform breeding programs in the future.
Additional Links: PMID-40194944
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40194944,
year = {2025},
author = {Wilson, I and Perry, T and Eisenhofer, R and Rismiller, P and Shaw, M and Grutzner, F},
title = {Microbiota changes in lactation in the short-beaked echidna (Tachyglossus aculeatus).},
journal = {FEMS microbiology ecology},
volume = {},
number = {},
pages = {},
doi = {10.1093/femsec/fiaf036},
pmid = {40194944},
issn = {1574-6941},
abstract = {Monotreme and marsupial development is characterised by a short gestation, with young exposed to the environment at an early developmental stage and supported by a long lactation in the pouch, pseudo-pouch, or burrow. The lack of a functional adaptive immune system in these altricial young raises questions about how they survive in a microbe-rich environment. Previous studies on marsupial pouches have revealed changes to pouch microbe composition during lactation, but no information is available in monotremes. We investigated changes in the echidna pseudo-pouch microbiota (n = 22) during different stages of the reproductive cycle and whether this differs between wild and zoo-managed animals. Metataxonomic profiling using 16S rRNA gene sequencing revealed that pseudo-pouch microbial communities undergo dramatic changes during lactation, with significant differences in taxonomic composition compared with samples taken outside of breeding season or during courtship and mating. This suggests that the echidna pseudo-pouch environment changes during lactation to accommodate young that lack a functional adaptive immune system. Furthermore, captivity was not found to have a significant effect on pseudo-pouch microbiota. This study pioneers pouch microbiota research in monotremes, provides new biological information on echidna reproduction, and may also provide information about the effects of captive management to inform breeding programs in the future.},
}
RevDate: 2025-04-07
CmpDate: 2025-04-07
MetaDAVis: An R shiny application for metagenomic data analysis and visualization.
PloS one, 20(4):e0319949 pii:PONE-D-24-54435.
The human microbiome exerts tremendous influence on maintaining a balance between human health and disease. High-throughput sequencing has enabled the study of microbial communities at an unprecedented resolution. Generation of massive amounts of sequencing data has also presented novel challenges to analyzing and visualizing data to make biologically relevant interpretations. We have developed an interactive Metagenome Data Analysis and Visualization (MetaDAVis) tool for 16S rRNA as well as the whole genome sequencing data analysis and visualization to address these challenges using an R Shiny application. MetaDAVis can perform six different types of analyses that include: i) Taxonomic abundance distribution; ii) Alpha and beta diversity analyses; iii) Dimension reduction tasks using PCA, t-SNE, and UMAP; iv) Correlation analysis using taxa- or sample-based data; v) Heatmap generation; and vi) Differential abundance analysis. MetaDAVis creates interactive and dynamic figures and tables from multiple methods enabling users to easily understand their data using different variables. Our program is user-friendly and easily customizable allowing those without any programming background to perform comprehensive data analyses using a standalone or web-based interface.
Additional Links: PMID-40193328
Publisher:
PubMed:
Citation:
show bibtex listing
hide bibtex listing
@article {pmid40193328,
year = {2025},
author = {Jagadesan, S and Guda, C},
title = {MetaDAVis: An R shiny application for metagenomic data analysis and visualization.},
journal = {PloS one},
volume = {20},
number = {4},
pages = {e0319949},
doi = {10.1371/journal.pone.0319949},
pmid = {40193328},
issn = {1932-6203},
mesh = {*Metagenomics/methods ; Humans ; RNA, Ribosomal, 16S/genetics ; *Software ; *Metagenome ; Microbiota/genetics ; High-Throughput Nucleotide Sequencing ; },
abstract = {The human microbiome exerts tremendous influence on maintaining a balance between human health and disease. High-throughput sequencing has enabled the study of microbial communities at an unprecedented resolution. Generation of massive amounts of sequencing data has also presented novel challenges to analyzing and visualizing data to make biologically relevant interpretations. We have developed an interactive Metagenome Data Analysis and Visualization (MetaDAVis) tool for 16S rRNA as well as the whole genome sequencing data analysis and visualization to address these challenges using an R Shiny application. MetaDAVis can perform six different types of analyses that include: i) Taxonomic abundance distribution; ii) Alpha and beta diversity analyses; iii) Dimension reduction tasks using PCA, t-SNE, and UMAP; iv) Correlation analysis using taxa- or sample-based data; v) Heatmap generation; and vi) Differential abundance analysis. MetaDAVis creates interactive and dynamic figures and tables from multiple methods enabling users to easily understand their data using different variables. Our program is user-friendly and easily customizable allowing those without any programming background to perform comprehensive data analyses using a standalone or web-based interface.},
}
MeSH Terms:
show MeSH Terms
hide MeSH Terms
*Metagenomics/methods
Humans
RNA, Ribosomal, 16S/genetics
*Software
*Metagenome
Microbiota/genetics
High-Throughput Nucleotide Sequencing
▼ ▼ LOAD NEXT 100 CITATIONS
RJR Experience and Expertise
Researcher
Robbins holds BS, MS, and PhD degrees in the life sciences. He served as a tenured faculty member in the Zoology and Biological Science departments at Michigan State University. He is currently exploring the intersection between genomics, microbial ecology, and biodiversity — an area that promises to transform our understanding of the biosphere.
Educator
Robbins has extensive experience in college-level education: At MSU he taught introductory biology, genetics, and population genetics. At JHU, he was an instructor for a special course on biological database design. At FHCRC, he team-taught a graduate-level course on the history of genetics. At Bellevue College he taught medical informatics.
Administrator
Robbins has been involved in science administration at both the federal and the institutional levels. At NSF he was a program officer for database activities in the life sciences, at DOE he was a program officer for information infrastructure in the human genome project. At the Fred Hutchinson Cancer Research Center, he served as a vice president for fifteen years.
Technologist
Robbins has been involved with information technology since writing his first Fortran program as a college student. At NSF he was the first program officer for database activities in the life sciences. At JHU he held an appointment in the CS department and served as director of the informatics core for the Genome Data Base. At the FHCRC he was VP for Information Technology.
Publisher
While still at Michigan State, Robbins started his first publishing venture, founding a small company that addressed the short-run publishing needs of instructors in very large undergraduate classes. For more than 20 years, Robbins has been operating The Electronic Scholarly Publishing Project, a web site dedicated to the digital publishing of critical works in science, especially classical genetics.
Speaker
Robbins is well-known for his speaking abilities and is often called upon to provide keynote or plenary addresses at international meetings. For example, in July, 2012, he gave a well-received keynote address at the Global Biodiversity Informatics Congress, sponsored by GBIF and held in Copenhagen. The slides from that talk can be seen HERE.
Facilitator
Robbins is a skilled meeting facilitator. He prefers a participatory approach, with part of the meeting involving dynamic breakout groups, created by the participants in real time: (1) individuals propose breakout groups; (2) everyone signs up for one (or more) groups; (3) the groups with the most interested parties then meet, with reports from each group presented and discussed in a subsequent plenary session.
Designer
Robbins has been engaged with photography and design since the 1960s, when he worked for a professional photography laboratory. He now prefers digital photography and tools for their precision and reproducibility. He designed his first web site more than 20 years ago and he personally designed and implemented this web site. He engages in graphic design as a hobby.
RJR Picks from Around the Web (updated 11 MAY 2018 )
Old Science
Weird Science
Treating Disease with Fecal Transplantation
Fossils of miniature humans (hobbits) discovered in Indonesia
Paleontology
Dinosaur tail, complete with feathers, found preserved in amber.
Astronomy
Mysterious fast radio burst (FRB) detected in the distant universe.
Big Data & Informatics
Big Data: Buzzword or Big Deal?
Hacking the genome: Identifying anonymized human subjects using publicly available data.